- -

R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence

Show full item record

Singh, D.; Kohli, JK. (2014). R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence. Applied General Topology. 15(2):155-166. doi:http://dx.doi.org/10.4995/agt.2014.3029.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43617

Files in this item

Item Metadata

Title: R-spaces and closedness/completeness of certain function spaces in the topology of uniform convergence
Author:
Issued date:
Abstract:
[EN] It is shown that the notion of an − cl R space (Demonstratio Math. 46(1) (2013), 229-244) fits well as a separation axiom between zero dimensionality and − 0 R spaces. Basic properties of − cl R spaces are studied and ...[+]
Subjects: R space , Ultra Hausdorff space , Initial property , Monoreflective (epireflective) subcategory , R_cl-supercontinuous function , Topology of uniform convergence
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2014.3029
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2014.3029
Type: Artículo

References

Arhangel’skii, A. V. (Ed.). (1995). General Topology III. Encyclopaedia of Mathematical Sciences. doi:10.1007/978-3-662-07413-8

S. P. Arya and M. Deb, On mapping almost continuous in the sense of Frol'ık, Math. Student 41 (1973), 311–321.

Aull, C. . (1976). Functionally regular spaces. Indagationes Mathematicae (Proceedings), 79(4), 281-288. doi:10.1016/1385-7258(76)90066-4 [+]
Arhangel’skii, A. V. (Ed.). (1995). General Topology III. Encyclopaedia of Mathematical Sciences. doi:10.1007/978-3-662-07413-8

S. P. Arya and M. Deb, On mapping almost continuous in the sense of Frol'ık, Math. Student 41 (1973), 311–321.

Aull, C. . (1976). Functionally regular spaces. Indagationes Mathematicae (Proceedings), 79(4), 281-288. doi:10.1016/1385-7258(76)90066-4

A. Császár, General Topology, Adam Higler Ltd., Bristol, 1978.

Davis, A. S. (1961). Indexed Systems of Neighborhoods for General Topological Spaces. The American Mathematical Monthly, 68(9), 886. doi:10.2307/2311686

Z. Frolík, Remarks concerning the invariance of Baire spaces under mapping, Czechoslovak Math. J. 11, no. 3 (1961), 381–385.

M. Ganster, On strongly s-regular spaces, Glasnik Mat. 25, no. 45 (1990), 195–201.

K. R. Gentry, and H. B. Hoyle, III, Somewhat continuous functions, Czechoslovak Math. J. 21, no. 1 (1971), 5–12.

Heldermann, N. C. (1981). Developability and Some New Regularity Axioms. Canadian Journal of Mathematics, 33(3), 641-663. doi:10.4153/cjm-1981-051-9

H. B. Hoyle, III, Function spaces for somewhat continuous functions, Czechoslovak Math. J. 21, no. 1 (1971), 31–34.

J. L. Kelly, General Topology, Van Nostrand, New York, 1955.

S. Kempisty, Sur les functions quasicontinuous, Fund. Math. 19 (1932), 184–197.

J. K. Kohli and J. Aggarwal, Closedness of certain classes of functions in the topology of uniform convergence, Demonstratio Math. 45, no. 4 (2012), 947–952.

J. K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33, no. 7 (2002), 1097–1108.

J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 32, no. 2 (2001), 227–235.

J. K. Kohli and D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 34, no. 7 (2003), 1089–1100.

J. K. Kohli and D. Singh, Between regularity and complete regularity and a factorization of complete regularity, Studii Si Cercetari Seria Matematica 17 (2007), 125–134.

J. K. Kohli, B. K. Tyagi, D. Singh and J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 47, no. 2 (2014), 433–448.

Levine, N. (1963). Semi-Open Sets and Semi-Continuity in Topological Spaces. The American Mathematical Monthly, 70(1), 36. doi:10.2307/2312781

Mack, J. (1970). Countable paracompactness and weak normality properties. Transactions of the American Mathematical Society, 148(1), 265-265. doi:10.1090/s0002-9947-1970-0259856-3

Mashhour, A. S., Hasanein, I. A., & El-Deeb, S. N. (1983). α-Continuous and α-open mappings. Acta Mathematica Hungarica, 41(3-4), 213-218. doi:10.1007/bf01961309

Naimpally, S. A. (1966). Function Space Topologies for Connectivity and Semi-Connectivity Functions. Canadian Mathematical Bulletin, 9(3), 349-352. doi:10.4153/cmb-1966-044-4

Naimpally, S. A. (1966). Graph topology for function spaces. Transactions of the American Mathematical Society, 123(1), 267-267. doi:10.1090/s0002-9947-1966-0192466-4

Njȧstad, O. (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15(3), 961-970. doi:10.2140/pjm.1965.15.961

N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110–113.

W. Sierpinski, Sur une propriété de functions réelles quelconques, Matematiche (Catania) 8 (1953), 43–48.

M. K. Singal and S. B. Niemse, z-continuous mappings, The Mathematics Student 66, no. 1-4 (1997), 193–210.

D. Singh, D*-supercontinuous functions, Bull. Cal. Math. Soc. 94, no. 2 (2002), 67–76.

Singh, D. (2007). cl-Supercontinuous Functions. Applied General Topology, 8(2), 293-300. doi:10.4995/agt.2007.1899

D. Singh, B. K. Tyagi, J. Aggarwal and J. K. Kohli, Rz-supercontinuous functions, Math. Bohemica, to appear.

J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.

Staum, R. (1974). The algebra of bounded continuous functions into a nonarchimedean field. Pacific Journal of Mathematics, 50(1), 169-185. doi:10.2140/pjm.1974.50.169

Steen, L. A., & Seebach, J. A. (1978). Counterexamples in Topology. doi:10.1007/978-1-4612-6290-9

B. K. Tyagi, J. K. Kohli and D. Singh, Rcl-supercontinuous functions, Demonstratio Math. 46, no. 1 (2013), 229–244.

R. Vaidyanathswamy, Treatise on Set Topology, Chelsa Publishing Company, New York, 1960.

W. T. Van East and H. Freudenthal, Trennung durch stetige Functionen in topologishen Raümen, Indag. Math. 15 (1951), 359–368.

N. K. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103–118.

G. J. Wong, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55–63.

Yang, C.-T. (1954). On paracompact spaces. Proceedings of the American Mathematical Society, 5(2), 185-185. doi:10.1090/s0002-9939-1954-0062418-0

[-]

This item appears in the following Collection(s)

Show full item record