- -

Computational topology for approximations of knots

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computational topology for approximations of knots

Show simple item record

Files in this item

dc.contributor.author Li, Ji es_ES
dc.contributor.author Peters, T. J. es_ES
dc.contributor.author Jordan, K. E. es_ES
dc.date.accessioned 2014-10-28T07:34:59Z
dc.date.available 2014-10-28T07:34:59Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43628
dc.description.abstract [EN] The preservation of ambient isotopic equivalence under piecewise linear (PL) approximation for smooth knots are prominent in molecular modeling and simulation. Sufficient conditions are given regarding:Hausdorff distance, anda sum of total curvature and derivative.High degree Bézier curves are often used as smooth representations, where computational efficiency is a practical concern. Subdivision can produce PL approximations for a given B\'ezier curve, fulfilling the above two conditions. The primary contributions are:       (i) a priori bounds on the number of subdivision iterations sufficient to achieve a PL approximation that is ambient isotopic to the original B\'ezier curve, and       (ii) improved iteration bounds over those previously established.  es_ES
dc.description.sponsorship The first, two authors acknowledge, with appreciation, partial support from NSF Grants 1053077 and 0923158 and also from IBM. The findings presented are the responsibility of these authors, not of the funding programs.
dc.language Inglés en_EN
dc.publisher Editorial Universitat Politècnica de València
dc.relation NSF/1053077
dc.relation NSF/0923158
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Knot approximation es_ES
dc.subject Ambient isotopy es_ES
dc.subject Bézier curve es_ES
dc.subject Subdivision es_ES
dc.subject Piecewise linear approximation es_ES
dc.title Computational topology for approximations of knots es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-27T16:24:59Z
dc.identifier.doi 10.4995/agt.2014.2281
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Li, J.; Peters, TJ.; Jordan, KE. (2014). Computational topology for approximations of knots. Applied General Topology. 15(2):203-220. doi:http://dx.doi.org/10.4995/agt.2014.2281. es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.2281 es_ES
dc.description.upvformatpinicio 203 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder National Sanitation Foundation
dc.relation.references Amenta, N., Peters, T. J., & Russell, A. C. (2003). Computational topology: ambient isotopic approximation of 2-manifolds. Theoretical Computer Science, 305(1-3), 3-15. doi:10.1016/s0304-3975(02)00691-6 es_ES
dc.relation.references L. E. Andersson, S. M. Dorney, T. J. Peters and N. F. Stewart, Polyhedral perturbations that preserve topological form, CAGD 12, no. 8 (1995), 785-799. es_ES
dc.relation.references Burr, M., Choi, S. W., Galehouse, B., & Yap, C. K. (2012). Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. Journal of Symbolic Computation, 47(2), 131-152. doi:10.1016/j.jsc.2011.08.021 es_ES
dc.relation.references Chazal, F., & Cohen-Steiner, D. (2005). A condition for isotopic approximation. Graphical Models, 67(5), 390-404. doi:10.1016/j.gmod.2005.01.005 es_ES
dc.relation.references W. Cho, T. Maekawa and N. M. Patrikalakis, Topologically reliable approximation in terms of homeomorphism of composite Bézier curves, CAGD 13 (1996), 497-520. es_ES
dc.relation.references Denne, E., & Sullivan, J. M. (2008). Convergence and Isotopy Type for Graphs of Finite Total Curvature. Discrete Differential Geometry, 163-174. doi:10.1007/978-3-7643-8621-4_8 es_ES
dc.relation.references G. E. Farin, Curves and surfaces for computer-aided geometric design: A practical code, Academic Press, Inc., 1996. es_ES
dc.relation.references Hirsch, M. W. (1976). Differential Topology. Graduate Texts in Mathematics. doi:10.1007/978-1-4684-9449-5 es_ES
dc.relation.references J. Li, T. J. Peters, D. Marsh and K. E. Jordan, Computational topology counterexamples with 3D visualization of Bézier curves, Applied General Topology 13, no. 2 (2012), 115-134. es_ES
dc.relation.references Lin, L., & Yap, C. (2011). Adaptive Isotopic Approximation of Nonsingular Curves: the Parameterizability and Nonlocal Isotopy Approach. Discrete & Computational Geometry, 45(4), 760-795. doi:10.1007/s00454-011-9345-9 es_ES
dc.relation.references T. Maekawa, N. M. Patrikalakis, T. Sakkalis and G. Yu, Analysis and applications of pipe surfaces, CAGD 15, no. 5 (1998), 437-458. es_ES
dc.relation.references Milnor, J. W. (1950). On the Total Curvature of Knots. The Annals of Mathematics, 52(2), 248. doi:10.2307/1969467 es_ES
dc.relation.references G. Monge, Application de l'analyse à la géométrie, Bachelier, Paris, 1850. es_ES
dc.relation.references Moore, E. L. F., Peters, T. J., & Roulier, J. A. (2007). Preserving computational topology by subdivision of quadratic and cubic Bézier curves. Computing, 79(2-4), 317-323. doi:10.1007/s00607-006-0208-9 es_ES
dc.relation.references G. Morin and R. Goldman, On the smooth convergence of subdivision and degree elevation for Bézier curves, CAGD 18 (2001), 657-666. es_ES
dc.relation.references J. Munkres, Topology, Prentice Hall, 2nd edition, 1999. es_ES
dc.relation.references D. Nairn, J. Peters and D. Lutterkort, Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon, CAGD 16 (1999), 613-63. es_ES
dc.relation.references Reid, M., & Szendroi, B. (2005). Geometry and Topology. doi:10.1017/cbo9780511807510 es_ES


This item appears in the following Collection(s)

Show simple item record