- -

Computational topology for approximations of knots

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computational topology for approximations of knots

Show simple item record

Files in this item

dc.contributor.author Li, Ji es_ES
dc.contributor.author Peters, T. J. es_ES
dc.contributor.author Jordan, K. E. es_ES
dc.date.accessioned 2014-10-28T07:34:59Z
dc.date.available 2014-10-28T07:34:59Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43628
dc.description.abstract [EN] The preservation of ambient isotopic equivalence under piecewise linear (PL) approximation for smooth knots are prominent in molecular modeling and simulation. Sufficient conditions are given regarding:Hausdorff distance, anda sum of total curvature and derivative.High degree Bézier curves are often used as smooth representations, where computational efficiency is a practical concern. Subdivision can produce PL approximations for a given B\'ezier curve, fulfilling the above two conditions. The primary contributions are:       (i) a priori bounds on the number of subdivision iterations sufficient to achieve a PL approximation that is ambient isotopic to the original B\'ezier curve, and       (ii) improved iteration bounds over those previously established.  es_ES
dc.description.sponsorship The first, two authors acknowledge, with appreciation, partial support from NSF Grants 1053077 and 0923158 and also from IBM. The findings presented are the responsibility of these authors, not of the funding programs.
dc.language Inglés en_EN
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Knot approximation es_ES
dc.subject Ambient isotopy es_ES
dc.subject Bézier curve es_ES
dc.subject Subdivision es_ES
dc.subject Piecewise linear approximation es_ES
dc.title Computational topology for approximations of knots es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-27T16:24:59Z
dc.identifier.doi 10.4995/agt.2014.2281
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Li, J.; Peters, TJ.; Jordan, KE. (2014). Computational topology for approximations of knots. Applied General Topology. 15(2):203-220. doi:http://dx.doi.org/10.4995/agt.2014.2281. es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.2281 es_ES
dc.description.upvformatpinicio 203 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147


This item appears in the following Collection(s)

Show simple item record