Abstract:
|
La bioinformática es la aplicación de las ciencias computacionales a la gestión y análisis de datos biológicos. A partir de 2005, con la aparición de los secuenciadores de ADN de nueva generación surge lo que se conoce ...[+]
La bioinformática es la aplicación de las ciencias computacionales a la gestión y análisis de datos biológicos. A partir de 2005, con la aparición de los secuenciadores de ADN de nueva generación surge lo que se conoce como Next Generation Sequencing
o NGS.
Un único experimento biológico puesto en marcha en una máquina de secuenciación NGS puede producir fácilmente cientos de gigabytes o incluso terabytes de datos. Dependiendo de la técnica elegida este proceso puede realizarse en unas pocas horas o días.
La disponibilidad de recursos locales asequibles, tales como los procesadores multinúcleo o las nuevas tarjetas gráfi cas preparadas para el cálculo de propósito general GPGPU (General Purpose Graphic Processing Unit ), constituye una gran oportunidad para hacer frente a estos problemas.
En la actualidad, un tema abordado con frecuencia es el alineamiento de secuencias de ADN. En bioinformática, el alineamiento permite comparar dos o más secuencias de ADN, ARN, o estructuras primarias proteicas, resaltando sus zonas de similitud. Dichas similitudes podrían indicar relaciones funcionales o evolutivas entre los genes o proteínas consultados. Además, la existencia de similitudes entre las secuencias de un individuo paciente y de otro individuo con una enfermedad genética detectada podría utilizarse de manera efectiva en el campo de la medicina diagnóstica.
El problema en torno al que gira el desarrollo de la tesis doctoral consiste en la localización de fragmentos de secuencia cortos dentro del ADN. Esto se conoce bajo el sobrenombre de mapeo de secuencia o sequence mapping.
Dicho mapeo debe permitir errores, pudiendo mapear secuencias incluso existiendo variabilidad genética o errores de lectura en el mapeo.
Existen diversas técnicas para abordar el mapeo, pero desde la aparición de la NGS destaca la búsqueda por pre jos indexados y agrupados mediante la transformada de Burrows-Wheeler [28] (o BWT en lo sucesivo). Dicha transformada se empleó originalmente en técnicas de compresión de datos, como es el caso del algoritmo bzip2. Su utilización como herramienta para la indización y búsqueda posterior de información es más reciente [22]. La ventaja es que su complejidad computacional depende únicamente de la longitud de la secuencia a mapear.
Por otra parte, una gran cantidad de técnicas de alineamiento se basan en algoritmos de programación dinámica, ya sea Smith-Watterman o modelos ocultos de Markov. Estos proporcionan mayor sensibilidad, permitiendo mayor cantidad de errores, pero su coste computacional es mayor y depende del tamaño de la secuencia multiplicado por el de la cadena de referencia.
Muchas herramientas combinan una primera fase de búsqueda con la BWT de regiones candidatas al alineamiento y una segunda fase de alineamiento local en la que se mapean cadenas con Smith-Watterman o HMM. Cuando estamos mapeando permitiendo pocos errores, una segunda fase con un algoritmo de programación dinámica resulta demasiado costosa, por lo que una búsqueda inexacta basada en BWT puede resultar más e ficiente.
La principal motivación de la tesis doctoral es la implementación de un algoritmo de búsqueda inexacta basado únicamente en la BWT, adaptándolo a las arquitecturas paralelas modernas, tanto en CPU como en GPGPU. El algoritmo constituirá un método nuevo de rami cación y poda adaptado a la información genómica.
Durante el periodo de estancia se estudiarán los Modelos ocultos de Markov y se realizará una implementación sobre modelos de computación funcional GTA (Aggregate o Test o Generate), así como la paralelización en memoria compartida y distribuida de dicha plataforma de programación funcional.
[-]
|