dc.contributor.author |
Nashine, Hemant Kumar
|
es_ES |
dc.contributor.author |
Romaguera Bonilla, Salvador
|
es_ES |
dc.date.accessioned |
2014-10-30T13:31:02Z |
|
dc.date.available |
2014-10-30T13:31:02Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
1687-1820 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/43733 |
|
dc.description.abstract |
We obtain fixed point theorems for cyclic self-maps on complete metric spaces
involving Meir-Keeler and weaker Meir-Keeler functions, respectively. In this way, we
extend several well-known fixed point theorems and, in particular, improve some very
recent results on weaker Meir-Keeler functions. Fixed point results for well-posed
property and for limit shadowing property are also deduced. Finally, an application to
the study of existence and uniqueness of solutions for a class of nonlinear integral
equations is presented. |
es_ES |
dc.description.sponsorship |
The second author thanks for the support of the Ministry of Economy and Competitiveness of Spain under grant MTM2012-37894-C02-01, and the Universitat Politecnica de Valencia, grant PAID-06-12-SP20120471. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
SpringerOpen |
es_ES |
dc.relation.ispartof |
Fixed Point Theory and Applications |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Fixed point |
es_ES |
dc.subject |
Cyclic map |
es_ES |
dc.subject |
Weaker Meir-Keeler function |
es_ES |
dc.subject |
Complete metric space |
es_ES |
dc.subject |
Integral equation |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1186/1687-1812-2013-224 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120471/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Nashine, HK.; Romaguera Bonilla, S. (2013). Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications. Fixed Point Theory and Applications. 2013(224):1-15. https://doi.org/10.1186/1687-1812-2013-224 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1186/1687-1812-2013-224 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
15 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
2013 |
es_ES |
dc.description.issue |
224 |
es_ES |
dc.relation.senia |
247180 |
|
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.description.references |
Kirk WA, Srinavasan PS, Veeramani P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4: 79–89. |
es_ES |
dc.description.references |
Banach S: Sur les operations dans les ensembles abstraits et leur application aux equations integerales. Fundam. Math. 1922, 3: 133–181. |
es_ES |
dc.description.references |
Boyd DW, Wong SW: On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9 |
es_ES |
dc.description.references |
Caristi J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215: 241–251. |
es_ES |
dc.description.references |
Di Bari C, Suzuki T, Vetro C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 2008, 69: 3790–3794. 10.1016/j.na.2007.10.014 |
es_ES |
dc.description.references |
Karapinar E: Fixed point theory for cyclic weaker ϕ -contraction. Appl. Math. Lett. 2011, 24: 822–825. 10.1016/j.aml.2010.12.016 |
es_ES |
dc.description.references |
Karapinar E, Sadarangani K: Corrigendum to “Fixed point theory for cyclic weaker ϕ -contraction” [Appl. Math. Lett. Vol. 24(6), 822–825.]. Appl. Math. Lett. 2012, 25: 1582–1584. 10.1016/j.aml.2011.11.001 |
es_ES |
dc.description.references |
Karapinar E, Sadarangani K:Fixed point theory for cyclic ( ϕ − φ ) -contractions. Fixed Point Theory Appl. 2011., 2011: Article ID 69 |
es_ES |
dc.description.references |
Nahsine HK: Cyclic generalized ψ -weakly contractive mappings and fixed point results with applications to integral equations. Nonlinear Anal. 2012, 75: 6160–6169. 10.1016/j.na.2012.06.021 |
es_ES |
dc.description.references |
Păcurar M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory 2011, 12: 419–428. |
es_ES |
dc.description.references |
Păcurar M, Rus IA: Fixed point theory for cyclic φ -contractions. Nonlinear Anal. 2010, 72: 2683–2693. |
es_ES |
dc.description.references |
Piatek B: On cyclic Meir-Keeler contractions in metric spaces. Nonlinear Anal. 2011, 74: 35–40. 10.1016/j.na.2010.08.010 |
es_ES |
dc.description.references |
Rus IA: Cyclic representations and fixed points. Ann. “Tiberiu Popoviciu” Sem. Funct. Equ. Approx. Convexity 2005, 3: 171–178. |
es_ES |
dc.description.references |
Chen CM: Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 17 |
es_ES |
dc.description.references |
Chen CM: Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 41 |
es_ES |
dc.description.references |
Meir A, Keeler E: A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28: 326–329. 10.1016/0022-247X(69)90031-6 |
es_ES |
dc.description.references |
Matkowski J: Integrable solutions of functional equations. Diss. Math. 1975, 127: 1–68. |
es_ES |
dc.description.references |
Karapinar E, Romaguera S, Tas K: Fixed points for cyclic orbital generalized contractions on complete metric spaces. Cent. Eur. J. Math. 2013, 11: 552–560. 10.2478/s11533-012-0145-0 |
es_ES |
dc.description.references |
De Blasi FS, Myjak J: Sur la porosité des contractions sans point fixed. C. R. Math. Acad. Sci. Paris 1989, 308: 51–54. |
es_ES |
dc.description.references |
Lahiri BK, Das P: Well-posedness and porosity of certain classes of operators. Demonstr. Math. 2005, 38: 170–176. |
es_ES |
dc.description.references |
Popa V: Well-posedness of fixed point problems in orbitally complete metric spaces. Stud. Cercet. ştiinţ. - Univ. Bacău, Ser. Mat. 2006, 16: 209–214. Supplement. Proceedings of ICMI 45, Bacau, Sept. 18–20 (2006) |
es_ES |
dc.description.references |
Popa VV: Well-posedness of fixed point problems in compact metric spaces. Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz. 2008, 60: 1–4. |
es_ES |