- -

Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nashine, Hemant Kumar es_ES
dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.date.accessioned 2014-10-30T13:31:02Z
dc.date.available 2014-10-30T13:31:02Z
dc.date.issued 2013
dc.identifier.issn 1687-1820
dc.identifier.uri http://hdl.handle.net/10251/43733
dc.description.abstract We obtain fixed point theorems for cyclic self-maps on complete metric spaces involving Meir-Keeler and weaker Meir-Keeler functions, respectively. In this way, we extend several well-known fixed point theorems and, in particular, improve some very recent results on weaker Meir-Keeler functions. Fixed point results for well-posed property and for limit shadowing property are also deduced. Finally, an application to the study of existence and uniqueness of solutions for a class of nonlinear integral equations is presented. es_ES
dc.description.sponsorship The second author thanks for the support of the Ministry of Economy and Competitiveness of Spain under grant MTM2012-37894-C02-01, and the Universitat Politecnica de Valencia, grant PAID-06-12-SP20120471. en_EN
dc.language Inglés es_ES
dc.publisher SpringerOpen es_ES
dc.relation.ispartof Fixed Point Theory and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fixed point es_ES
dc.subject Cyclic map es_ES
dc.subject Weaker Meir-Keeler function es_ES
dc.subject Complete metric space es_ES
dc.subject Integral equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1687-1812-2013-224
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12-SP20120471/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Nashine, HK.; Romaguera Bonilla, S. (2013). Fixed point theorems for cyclic self-maps involving weaker Meir-Keelerfunctions in complete metric spaces and applications. Fixed Point Theory and Applications. 2013(224):1-15. https://doi.org/10.1186/1687-1812-2013-224 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1687-1812-2013-224 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.description.issue 224 es_ES
dc.relation.senia 247180
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Kirk WA, Srinavasan PS, Veeramani P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 2003, 4: 79–89. es_ES
dc.description.references Banach S: Sur les operations dans les ensembles abstraits et leur application aux equations integerales. Fundam. Math. 1922, 3: 133–181. es_ES
dc.description.references Boyd DW, Wong SW: On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9 es_ES
dc.description.references Caristi J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215: 241–251. es_ES
dc.description.references Di Bari C, Suzuki T, Vetro C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 2008, 69: 3790–3794. 10.1016/j.na.2007.10.014 es_ES
dc.description.references Karapinar E: Fixed point theory for cyclic weaker ϕ -contraction. Appl. Math. Lett. 2011, 24: 822–825. 10.1016/j.aml.2010.12.016 es_ES
dc.description.references Karapinar E, Sadarangani K: Corrigendum to “Fixed point theory for cyclic weaker ϕ -contraction” [Appl. Math. Lett. Vol. 24(6), 822–825.]. Appl. Math. Lett. 2012, 25: 1582–1584. 10.1016/j.aml.2011.11.001 es_ES
dc.description.references Karapinar E, Sadarangani K:Fixed point theory for cyclic ( ϕ − φ ) -contractions. Fixed Point Theory Appl. 2011., 2011: Article ID 69 es_ES
dc.description.references Nahsine HK: Cyclic generalized ψ -weakly contractive mappings and fixed point results with applications to integral equations. Nonlinear Anal. 2012, 75: 6160–6169. 10.1016/j.na.2012.06.021 es_ES
dc.description.references Păcurar M: Fixed point theory for cyclic Berinde operators. Fixed Point Theory 2011, 12: 419–428. es_ES
dc.description.references Păcurar M, Rus IA: Fixed point theory for cyclic φ -contractions. Nonlinear Anal. 2010, 72: 2683–2693. es_ES
dc.description.references Piatek B: On cyclic Meir-Keeler contractions in metric spaces. Nonlinear Anal. 2011, 74: 35–40. 10.1016/j.na.2010.08.010 es_ES
dc.description.references Rus IA: Cyclic representations and fixed points. Ann. “Tiberiu Popoviciu” Sem. Funct. Equ. Approx. Convexity 2005, 3: 171–178. es_ES
dc.description.references Chen CM: Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 17 es_ES
dc.description.references Chen CM: Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 41 es_ES
dc.description.references Meir A, Keeler E: A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28: 326–329. 10.1016/0022-247X(69)90031-6 es_ES
dc.description.references Matkowski J: Integrable solutions of functional equations. Diss. Math. 1975, 127: 1–68. es_ES
dc.description.references Karapinar E, Romaguera S, Tas K: Fixed points for cyclic orbital generalized contractions on complete metric spaces. Cent. Eur. J. Math. 2013, 11: 552–560. 10.2478/s11533-012-0145-0 es_ES
dc.description.references De Blasi FS, Myjak J: Sur la porosité des contractions sans point fixed. C. R. Math. Acad. Sci. Paris 1989, 308: 51–54. es_ES
dc.description.references Lahiri BK, Das P: Well-posedness and porosity of certain classes of operators. Demonstr. Math. 2005, 38: 170–176. es_ES
dc.description.references Popa V: Well-posedness of fixed point problems in orbitally complete metric spaces. Stud. Cercet. ştiinţ. - Univ. Bacău, Ser. Mat. 2006, 16: 209–214. Supplement. Proceedings of ICMI 45, Bacau, Sept. 18–20 (2006) es_ES
dc.description.references Popa VV: Well-posedness of fixed point problems in compact metric spaces. Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz. 2008, 60: 1–4. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem