- -

Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Gómez Hernández, José Jaime es_ES
dc.contributor.author Xu, Teng es_ES
dc.date.accessioned 2014-11-03T07:09:31Z
dc.date.available 2014-11-03T07:09:31Z
dc.date.created 2014-10-16T10:00:01Z es_ES
dc.date.issued 2014-11-03T07:09:28Z es_ES
dc.identifier.uri http://hdl.handle.net/10251/43769
dc.description Tesis por compendio es_ES
dc.description.abstract The ensemble Kalman filter (EnKF) is nowadays recognized as an excellent inverse method for hydraulic conductivity characterization using transient piezometric head data. and it is proved that the EnKF is computationally efficient and capable of handling large fields compared to other inverse methods. However, it is needed a large ensemble size (Chen and Zhang, 2006) to get a high quality estimation, which means a lots of computation time. Parallel computing is an efficient alterative method to reduce the commutation time. Besides, although the EnKF is good accounting for the non linearities of the state equation, it fails when dealing with non-Gaussian distribution fields. Recently, many methods are developed trying to adapt the EnKF to non-Gaussian distributions(detailed in the History and present state chapter). Zhou et al. (2011, 2012) have proposed a Normal-Score Ensemble Kalman Filter (NS-EnKF) to character the non-Gaussian distributed conductivity fields, and already showed that transient piezometric head was enough for hydraulic conductivity characterization if a training image for the hydraulic conductivity was available. Then in this work, we will show that, when without such a training image but with enough transient piezometric head information, the performance of the updated ensemble of realizations in the characterization of the non-Gaussian reference field. In the end, we will introduce a new method for parameterizing geostatistical models coupling with the NS-EnKF in the characterization of a Heterogenous non-Gaussian hydraulic conductivity field. So, this doctor thesis is mainly including three parts, and the name of the parts as below. 1, Parallelized Ensemble Kalman Filter for Hydraulic Conductivity Characterization. 2, The Power of Transient Piezometric Head Data in Inverse Modeling: An Application of the Localized Normal-score EnKF with Covariance Inflation in a Heterogenous Bimodal Hydraulic Conductivity Field. 3, Parameterizing geostatistical models coupling with the NS-EnKF for Heterogenous Bimodal Hydraulic Conductivity characterization. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.source Riunet es_ES
dc.subject Parallel EnKF es_ES
dc.subject Hydraulic conductivity es_ES
dc.subject Parallel computing es_ES
dc.subject Normal score transform es_ES
dc.subject Localization es_ES
dc.subject Covariance inflation es_ES
dc.subject Ensemble Kalman filter es_ES
dc.subject Filter divergence es_ES
dc.subject Sequential simulation es_ES
dc.subject Non-Gaussian distribution es_ES
dc.subject Inverse modelin es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/43769 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Xu, T. (2014). Ensemble Kalman filtering for hydraulic conductivity characterization: Parallelization and non-Gaussianity [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43769 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.tesis 4739 es_ES
dc.description.compendio Compendio es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem