Mostrar el registro sencillo del ítem
dc.contributor.author | Bockelt, A. | es_ES |
dc.contributor.author | Palací López, Jesús | es_ES |
dc.contributor.author | Vidal Rodriguez, Borja | es_ES |
dc.date.accessioned | 2014-11-03T16:03:10Z | |
dc.date.available | 2014-11-03T16:03:10Z | |
dc.date.issued | 2013-08-15 | |
dc.identifier.issn | 0146-9592 | |
dc.identifier.uri | http://hdl.handle.net/10251/43819 | |
dc.description | This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-16-3123. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. | es_ES |
dc.description.abstract | The manipulation of the operating conditions of photoconductive antennas by means of an additional continuous wave (CW) is reported. It is used to control a fiber-based terahertz (THz) time-domain-spectroscopy system at telecom wavelengths. The injection of an optical CW into the transmitter allows the control of the THz amplitude without causing major degradation to the system performance. This, for instance, can be exploited to perform modulation of the THz signal. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia y Competitividad through project TEC2012-35797. The work of Alexander Bockelt is supported by the Formacion de Profesorado Universitario (FPU) grant program of the Ministerio de Economia y Competitividad. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Far infrared or terahertz | es_ES |
dc.subject | Photoconductive materials | es_ES |
dc.subject | Spectroscopy | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Control of terahertz emission in photoconductive antennas through an additional optical continuous wave | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OL.38.003123 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-35797/ES/ESPECTROSCOPIA DE TERAHERCIOS EN FIBRA OPTICA PARA APLICACIONES DE SENSADO DE MATERIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Bockelt, A.; Palací López, J.; Vidal Rodriguez, B. (2013). Control of terahertz emission in photoconductive antennas through an additional optical continuous wave. Optics Letters. 38(16):3123-3125. https://doi.org/10.1364/OL.38.003123 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OL.38.003123 | es_ES |
dc.description.upvformatpinicio | 3123 | es_ES |
dc.description.upvformatpfin | 3125 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.senia | 246606 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Siegel, P. H. (2002). Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3), 910-928. doi:10.1109/22.989974 | es_ES |
dc.description.references | Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature Photonics, 1(2), 97-105. doi:10.1038/nphoton.2007.3 | es_ES |
dc.description.references | Jepsen, P. U., Cooke, D. G., & Koch, M. (2010). Terahertz spectroscopy and imaging - Modern techniques and applications. Laser & Photonics Reviews, 5(1), 124-166. doi:10.1002/lpor.201000011 | es_ES |
dc.description.references | Smith, P. R., Auston, D. H., & Nuss, M. C. (1988). Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 24(2), 255-260. doi:10.1109/3.121 | es_ES |
dc.description.references | Hu, B. B., Zhang, X. ‐C., Auston, D. H., & Smith, P. R. (1990). Free‐space radiation from electro‐optic crystals. Applied Physics Letters, 56(6), 506-508. doi:10.1063/1.103299 | es_ES |
dc.description.references | Sartorius, B., Roehle, H., Künzel, H., Böttcher, J., Schlak, M., Stanze, D., … Schell, M. (2008). All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths. Optics Express, 16(13), 9565. doi:10.1364/oe.16.009565 | es_ES |
dc.description.references | Sartorius, B., Schlak, M., Stanze, D., Roehle, H., Künzel, H., Schmidt, D., … Schell, M. (2009). Continuous wave terahertz systems exploiting 15 µm telecom technologies. Optics Express, 17(17), 15001. doi:10.1364/oe.17.015001 | es_ES |
dc.description.references | Ryu, C., & Kong, S. G. (2010). Boosting terahertz radiation in THz-TDS using continuous-wave laser. Electronics Letters, 46(5), 359. doi:10.1049/el.2010.0142 | es_ES |
dc.description.references | Kyoung, J., Seo, M., Park, H., Koo, S., Kim, H., Park, Y., … Kim, D.-S. (2010). Giant nonlinear response of terahertz nanoresonators on VO_2 thin film. Optics Express, 18(16), 16452. doi:10.1364/oe.18.016452 | es_ES |
dc.description.references | Fan, F., Gu, W.-H., Chen, S., Wang, X.-H., & Chang, S.-J. (2013). State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. Optics Letters, 38(9), 1582. doi:10.1364/ol.38.001582 | es_ES |