- -

Control of terahertz emission in photoconductive antennas through an additional optical continuous wave

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control of terahertz emission in photoconductive antennas through an additional optical continuous wave

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bockelt, A. es_ES
dc.contributor.author Palací López, Jesús es_ES
dc.contributor.author Vidal Rodriguez, Borja es_ES
dc.date.accessioned 2014-11-03T16:03:10Z
dc.date.available 2014-11-03T16:03:10Z
dc.date.issued 2013-08-15
dc.identifier.issn 0146-9592
dc.identifier.uri http://hdl.handle.net/10251/43819
dc.description This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-16-3123. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. es_ES
dc.description.abstract The manipulation of the operating conditions of photoconductive antennas by means of an additional continuous wave (CW) is reported. It is used to control a fiber-based terahertz (THz) time-domain-spectroscopy system at telecom wavelengths. The injection of an optical CW into the transmitter allows the control of the THz amplitude without causing major degradation to the system performance. This, for instance, can be exploited to perform modulation of the THz signal. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad through project TEC2012-35797. The work of Alexander Bockelt is supported by the Formacion de Profesorado Universitario (FPU) grant program of the Ministerio de Economia y Competitividad. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Far infrared or terahertz es_ES
dc.subject Photoconductive materials es_ES
dc.subject Spectroscopy es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Control of terahertz emission in photoconductive antennas through an additional optical continuous wave es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.38.003123
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-35797/ES/ESPECTROSCOPIA DE TERAHERCIOS EN FIBRA OPTICA PARA APLICACIONES DE SENSADO DE MATERIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Bockelt, A.; Palací López, J.; Vidal Rodriguez, B. (2013). Control of terahertz emission in photoconductive antennas through an additional optical continuous wave. Optics Letters. 38(16):3123-3125. https://doi.org/10.1364/OL.38.003123 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OL.38.003123 es_ES
dc.description.upvformatpinicio 3123 es_ES
dc.description.upvformatpfin 3125 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 246606
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Siegel, P. H. (2002). Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50(3), 910-928. doi:10.1109/22.989974 es_ES
dc.description.references Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature Photonics, 1(2), 97-105. doi:10.1038/nphoton.2007.3 es_ES
dc.description.references Jepsen, P. U., Cooke, D. G., & Koch, M. (2010). Terahertz spectroscopy and imaging - Modern techniques and applications. Laser & Photonics Reviews, 5(1), 124-166. doi:10.1002/lpor.201000011 es_ES
dc.description.references Smith, P. R., Auston, D. H., & Nuss, M. C. (1988). Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 24(2), 255-260. doi:10.1109/3.121 es_ES
dc.description.references Hu, B. B., Zhang, X. ‐C., Auston, D. H., & Smith, P. R. (1990). Free‐space radiation from electro‐optic crystals. Applied Physics Letters, 56(6), 506-508. doi:10.1063/1.103299 es_ES
dc.description.references Sartorius, B., Roehle, H., Künzel, H., Böttcher, J., Schlak, M., Stanze, D., … Schell, M. (2008). All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths. Optics Express, 16(13), 9565. doi:10.1364/oe.16.009565 es_ES
dc.description.references Sartorius, B., Schlak, M., Stanze, D., Roehle, H., Künzel, H., Schmidt, D., … Schell, M. (2009). Continuous wave terahertz systems exploiting 15 µm telecom technologies. Optics Express, 17(17), 15001. doi:10.1364/oe.17.015001 es_ES
dc.description.references Ryu, C., & Kong, S. G. (2010). Boosting terahertz radiation in THz-TDS using continuous-wave laser. Electronics Letters, 46(5), 359. doi:10.1049/el.2010.0142 es_ES
dc.description.references Kyoung, J., Seo, M., Park, H., Koo, S., Kim, H., Park, Y., … Kim, D.-S. (2010). Giant nonlinear response of terahertz nanoresonators on VO_2 thin film. Optics Express, 18(16), 16452. doi:10.1364/oe.18.016452 es_ES
dc.description.references Fan, F., Gu, W.-H., Chen, S., Wang, X.-H., & Chang, S.-J. (2013). State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping. Optics Letters, 38(9), 1582. doi:10.1364/ol.38.001582 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem