- -

Second-harmonic generation for dispersive elastic waves in a discrete granular chain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Second-harmonic generation for dispersive elastic waves in a discrete granular chain

Mostrar el registro completo del ítem

Sánchez Morcillo, VJ.; Pérez Arjona, I.; Romero García, V.; Tournat, V.; Gusev, VE. (2013). Second-harmonic generation for dispersive elastic waves in a discrete granular chain. Physical Review E. 88(4):43203-43203. https://doi.org/10.1103/PhysRevE.88.043203

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43898

Ficheros en el ítem

Metadatos del ítem

Título: Second-harmonic generation for dispersive elastic waves in a discrete granular chain
Autor: Sánchez Morcillo, Víctor José Pérez Arjona, Isabel Romero García, Vicente Tournat, Vincent Gusev, V. E.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
The propagation of nonlinear compressional waves in a one-dimensional granular chain driven at one end by a harmonic excitation is studied. The chain is described by a Fermi-Pasta-Ulam (FPU) lattice model with quadratic ...[+]
Palabras clave: SOLITARY WAVES , TRANSMISSION , PROPAGATION , LATTICES , MODEL
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Review E. (issn: 1539-3755 )
DOI: 10.1103/PhysRevE.88.043203
Editorial:
American Physical Society
Versión del editor: http://dx.doi.org/10.1103/PhysRevE.88.043203
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/
info:eu-repo/grantAgreement/UPV//CEI-01-11/
info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0927/FR/Stability loss in granular media/STABINGRAM/
info:eu-repo/grantAgreement/GVA//BEST%2F2012/
Agradecimientos:
The work was financially supported by the MICINN of the Spanish Government, under Grant No. FIS2011-29734-C02-02 and by ANR Project Stabingram No. ANR-2010-BLAN-0927-03. V. S.-M. and I. P.-A. acknowledge financial support ...[+]
Tipo: Artículo

References

Nesterenko, V. F. (1984). Propagation of nonlinear compression pulses in granular media. Journal of Applied Mechanics and Technical Physics, 24(5), 733-743. doi:10.1007/bf00905892

Nesterenko, V. F. (2001). Dynamics of Heterogeneous Materials. doi:10.1007/978-1-4757-3524-6

Lazaridi, A. N., & Nesterenko, V. F. (1985). Observation of a new type of solitary waves in a one-dimensional granular medium. Journal of Applied Mechanics and Technical Physics, 26(3), 405-408. doi:10.1007/bf00910379 [+]
Nesterenko, V. F. (1984). Propagation of nonlinear compression pulses in granular media. Journal of Applied Mechanics and Technical Physics, 24(5), 733-743. doi:10.1007/bf00905892

Nesterenko, V. F. (2001). Dynamics of Heterogeneous Materials. doi:10.1007/978-1-4757-3524-6

Lazaridi, A. N., & Nesterenko, V. F. (1985). Observation of a new type of solitary waves in a one-dimensional granular medium. Journal of Applied Mechanics and Technical Physics, 26(3), 405-408. doi:10.1007/bf00910379

Coste, C., Falcon, E., & Fauve, S. (1997). Solitary waves in a chain of beads under Hertz contact. Physical Review E, 56(5), 6104-6117. doi:10.1103/physreve.56.6104

Job, S., Melo, F., Sokolow, A., & Sen, S. (2005). How Hertzian Solitary Waves Interact with Boundaries in a 1D Granular Medium. Physical Review Letters, 94(17). doi:10.1103/physrevlett.94.178002

SEN, S., HONG, J., BANG, J., AVALOS, E., & DONEY, R. (2008). Solitary waves in the granular chain. Physics Reports, 462(2), 21-66. doi:10.1016/j.physrep.2007.10.007

Campbell, D. K., Flach, S., & Kivshar, Y. S. (2004). Localizing Energy Through Nonlinearity and Discreteness. Physics Today, 57(1), 43-49. doi:10.1063/1.1650069

Boechler, N., Theocharis, G., Job, S., Kevrekidis, P. G., Porter, M. A., & Daraio, C. (2010). Discrete Breathers in One-Dimensional Diatomic Granular Crystals. Physical Review Letters, 104(24). doi:10.1103/physrevlett.104.244302

Berman, G. P., & Izrailev, F. M. (2005). The Fermi–Pasta–Ulam problem: Fifty years of progress. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(1), 015104. doi:10.1063/1.1855036

Tournat, V., Gusev, V. E., & Castagnède, B. (2004). Self-demodulation of elastic waves in a one-dimensional granular chain. Physical Review E, 70(5). doi:10.1103/physreve.70.056603

Korobov, A. I., Brazhkin, Y. A., & Sovetskaya, E. S. (2010). Characteristic features of elastic wave propagation in a one-dimensional model of an unconsolidated medium. Acoustical Physics, 56(4), 446-452. doi:10.1134/s106377101004007x

Korobov, A. I., Brazhkin, Y. A., & Shirgina, N. V. (2012). Nonlinear elastic properties of a model one-dimensional granular unconsolidated structure. Acoustical Physics, 58(1), 90-98. doi:10.1134/s1063771011060091

Marquie, P., Bilbault, J. M., & Remoissenet, M. (1994). Generation of envelope and hole solitons in an experimental transmission line. Physical Review E, 49(1), 828-835. doi:10.1103/physreve.49.828

Geniet, F., & Leon, J. (2002). Energy Transmission in the Forbidden Band Gap of a Nonlinear Chain. Physical Review Letters, 89(13). doi:10.1103/physrevlett.89.134102

Khomeriki, R., Lepri, S., & Ruffo, S. (2004). Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model. Physical Review E, 70(6). doi:10.1103/physreve.70.066626

Tse Ve Koon, K., Leon, J., Marquié, P., & Tchofo-Dinda, P. (2007). Cutoff solitons and bistability of the discrete inductance-capacitance electrical line: Theory and experiments. Physical Review E, 75(6). doi:10.1103/physreve.75.066604

Cabaret, J., Tournat, V., & Béquin, P. (2012). Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime. Physical Review E, 86(4). doi:10.1103/physreve.86.041305

Narisetti, R. K., Ruzzene, M., & Leamy, M. J. (2012). Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion, 49(2), 394-410. doi:10.1016/j.wavemoti.2011.12.005

Hladky-Hennion, A.-C., & Billy, M. de. (2007). Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. The Journal of the Acoustical Society of America, 122(5), 2594. doi:10.1121/1.2779130

Boechler, N., Theocharis, G., & Daraio, C. (2011). Bifurcation-based acoustic switching and rectification. Nature Materials, 10(9), 665-668. doi:10.1038/nmat3072

Maznev, A. A., Every, A. G., & Wright, O. B. (2013). Reciprocity in reflection and transmission: What is a ‘phonon diode’? Wave Motion, 50(4), 776-784. doi:10.1016/j.wavemoti.2013.02.006

Dauxois, T., Khomeriki, R., & Ruffo, S. (2007). Modulational instability in isolated and driven Fermi–Pasta–Ulam lattices. The European Physical Journal Special Topics, 147(1), 3-23. doi:10.1140/epjst/e2007-00200-2

Bunkin, F. V., Kravtsov, Y. A., & Lyakhov, G. A. (1986). Acoustic analogues of nonlinear-optics phenomena. Soviet Physics Uspekhi, 29(7), 607-619. doi:10.1070/pu1986v029n07abeh003458

Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1), 19-26. doi:10.1016/0771-050x(80)90013-3

Tournat, V., Pèrez-Arjona, I., Merkel, A., Sanchez-Morcillo, V., & Gusev, V. (2011). Elastic waves in phononic monolayer granular membranes. New Journal of Physics, 13(7), 073042. doi:10.1088/1367-2630/13/7/073042

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem