- -

Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nunez-Mancilla, Y. es_ES
dc.contributor.author Vega-Galvez, A. es_ES
dc.contributor.author Perez-Won, M. es_ES
dc.contributor.author Zura, L. es_ES
dc.contributor.author García Segovia, Purificación es_ES
dc.contributor.author Di Scala, Karina Cecilia es_ES
dc.date.accessioned 2014-11-10T09:05:47Z
dc.date.available 2014-11-10T09:05:47Z
dc.date.issued 2014-02
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/43998
dc.description.abstract Sliced strawberries were subjected to combined osmotic dehydration (40 °Brix) and high hydrostatic pressure (HHP) at 100, 200, 300, 400 and 500 MPa for 10 min. This research was carried out to study the effects of pressure on firmness, polysaccharides, total dietary fibre and microstructure, functional properties (rehydration ratio and water holding capacity) and bioactive compounds (anthocyanins, flavonoid and total phenolic). HHP affected the texture of the fruits leading to soft fruits due to increasing pressure. Fruit microstructure evidenced influence of pressure presenting the pressurised samples irregular matrices compared to samples treated at 0.1 MPa (control samples). Polysaccharides increased with pressure. Total dietary fibre, anthocyanins, flavonoids and total phenolic content showed a decrease with pressure when compared to control samples. es_ES
dc.description.sponsorship The authors gratefully acknowledge the Research Department of Universidad de La Serena, Chile for providing financial support to this investigation. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Strawberry es_ES
dc.subject High hydrostatic pressure
dc.subject Osmotic dehydration
dc.subject Microstructure
dc.subject Anthocyanins
dc.subject Firmness
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-013-1052-5
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Nunez-Mancilla, Y.; Vega-Galvez, A.; Perez-Won, M.; Zura, L.; García Segovia, P.; Di Scala, KC. (2014). Effect of Osmotic Dehydration Under High HydrostaticPressure on Microstructure, Functional Propertiesand Bioactive Compounds of Strawberry (Fragaria Vesca). Food and Bioprocess Technology. 7:516-524. doi:10.1007/s11947-013-1052-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11947-013-1052-5 es_ES
dc.description.upvformatpinicio 516 es_ES
dc.description.upvformatpfin 524 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.relation.senia 256587
dc.contributor.funder Universidad de La Serena es_ES
dc.description.references Al-Khuseibi, M. K., Sablani, S. S., & Perera, C. O. (2005). Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Drying Technology, 23(12), 2449–2461. es_ES
dc.description.references Association of Official Analytical Chemists (AOAC). (1990). Oficial method of Análisis, Association of Oficial analytical Chemists nº 934.06., (15th edition), Arlington, MA, Washington. es_ES
dc.description.references Basak, S., & Ramashamy, H. (1998). Effect of high pressure processing on the textural of selected fruit and vegetables. Journal Texture Study, 29, 587–601. es_ES
dc.description.references Bomben, J. L., & King, C. J. (1982). Heat and mass transport in the freezing of apple tissue. Journal of Food Technology, 17, 615–632. es_ES
dc.description.references Cheel, J., Theoduloz, C., Rodriguez, J. A., Caligari, P. D. S., & Schmeda-Hirschmann, G. (2007). Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chilensis ssp. Chilensis, F. vesca and F. x ananassa cv. Chandler. Food Chemistry, 102, 36–44. es_ES
dc.description.references Chiralt, A., & Talens, P. (2005). Physical and chemical changes induced by osmotic dehydration in plant tissues. Journal of Food Engineering, 67, 167–177. es_ES
dc.description.references Chuah, A. M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L. J., & Matoba, T. (2008). Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111, 20–28. es_ES
dc.description.references Da Silva, P. M., Lajolo, F. M., & Genovese, M. I. (2008). Bioctive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635. es_ES
dc.description.references Del-Valle, V., Hernandez-Muñoz, P., Guarda, A., & Galotto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia Picus indica) and its application to extend strawberry (Fragaria ananassa) shelf-life. Food Chemistry, 91, 751–756. es_ES
dc.description.references Di Scala, K., Vega-Gálvez, A., Uribe, E., Oyanadel, R., Miranda, M., Vergara, J., et al. (2011). Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. International Journal of Food Science and Technology, 46, 746–753. es_ES
dc.description.references El-Beltagy, A., Gamea, G. R., & Amer Essa, A. H. (2007). Solar drying characteristics of strawberry. Journal of Food Engineering, 78, 456–464. es_ES
dc.description.references Fraeye, I., Knockaert, G., Van Buggenhout, S., Duvetter, T., Hendrickx, M., & Van Loey, A. (2010). Enzyme infusion prior to thermal/high pressure processing of strawberries: mechanistic insight into firmness evolution. Innovative Food Science and Emerging Technologies, 11, 23–31. es_ES
dc.description.references Garcia, L. C., Pereira, L. M., De Luca Sarantopoulos, C. I. G., & Hubinger, M. D. (2010). Selection of an edible starch coating for minimally processed strawberry. Food Bioprocess Technology, 3, 834–842. es_ES
dc.description.references Hu, Y., Xu, J., & Hu, Q. (2003). Evaluation of antioxidant potencial of aloe vera (Aloe barbadensis Miller) extract. Journal Agriculture Food Chemistry, 51, 7788–7791. es_ES
dc.description.references Kafkas, E., Kosar, M., Paydas, S., Kafkas, S., & Baser, K. H. C. (2007). Quality characteristics of strawberry genotypes at different maturation stages. Food Chemistry, 100, 1229–1236. es_ES
dc.description.references Kasapis, S., & Sablani, S. (2008). The effect of pressure on the structural properties of biopolymer/co-solute Part II: The example of gelling polysaccharides. Carbohydrate Polymers, 72(3), 537–544. es_ES
dc.description.references Keenan, D. F., Brunton, N. P., Gormley, T. R., Butter, F., Tiwari, B. K., & Patras, A. (2010). Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruits smoothies. Innovative Food Science and Emerging Technologies, 11, 551–556. es_ES
dc.description.references Kingsly, A. R. P., Balasubramaniam, V. M., & Rastogi, N. K. (2007). Effect of high-pressure processing on texture and drying behavior of pineapple. Journal of Food Process Engineering, 32(3), 369–381. es_ES
dc.description.references Liu, M., Li, X. Q., Weber, C., Lee, C. Y., Brown, J., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of raspberries. Journal Agriculture Food Chemistry, 50, 2926–2930. es_ES
dc.description.references Mateos-Aparicio, I., Mateos-Peinado, C., & Rupérez, P. (2010). High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Science and Emerging Technologies, 11, 445–450. es_ES
dc.description.references Moraga, G., Martınez-Navarrete, N., & Chiralt, A. (2004). Water sorption isotherms and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering, 62, 315–321. es_ES
dc.description.references Moreno, J., Simpson, R., Baeza, A., Morales, J., Muñoz, C., Sastry, S., et al. (2012). Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT-. Food Science and Technology, 45, 148–154. es_ES
dc.description.references Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálvez, A., Arias, V., Tabilo-Munizaga, G., Briones-Labarca, V., et al. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science and Emerging Technologies, 12(3), 338–343. es_ES
dc.description.references Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálvez, A., Uribe, E., & Di, Scala, K. (2012). Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT—Food Science and Technology. doi: 10.1016/j.lwt.2012.02.027 . es_ES
dc.description.references Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Impacto of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT- Food Science and Technology, 42, 93–100. es_ES
dc.description.references Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high pressure processing on colour, texture and flavour of fruit and vegetable-based food products: a review. Trends in Food Science and Technology, 19, 320–328. es_ES
dc.description.references Ozcan, M. M., & Haciseferogullari, H. (2007). The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78, 1022–1028. es_ES
dc.description.references Pallauf, K., Rivas-Gonzalo, J. C., Del Castillo, M. D., Cano, M. P., & De Pascual-Teresa, S. (2008). Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits. Journal of Food Composition and Analysis, 21, 273–281. es_ES
dc.description.references Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2011). Stability and degradation kinetic of bioactive compounds and colour in strawberry jam during storage. Journal Food Bioprocess Technology, 4, 1245–1252. es_ES
dc.description.references Patras, A., Brunton, N. P. K., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innovative Food Science and Emerging Technologies, 10, 308–313. es_ES
dc.description.references Pérez-Vicente, A., Serrano, P., Abellán, P., & García-Viguera, C. (2004). Influence of packaging material on pomegranate juice colour and bioctive compounds, during storage. Journal of the Science of Food and Agriculture, 84, 639–644. es_ES
dc.description.references Prasad, K. N., Yang, B., Dong, X., Jiang, G., Zhang, H., Xie, H., et al. (2009). Flavonoid contents and antioxidant activities from Cinnamomum species. Innovative Food Science and Emerging Technologies, 10, 627–632. es_ES
dc.description.references Quaglia, G. B., Gravina, R., Paperi, R., & Paoletti, F. (1996). Effect of high pressure treatment on peroxidase activity, ascorbic acid content and texture in green peas. LWT- Food Science and Technolgy, 29, 552–555. es_ES
dc.description.references Ramulu, P., & Rao, P. U. (2003). Total, insoluble and soluble dietary fibre contents of Indian fruits. Journal of Food Composition and Analysis, 16, 677–685. es_ES
dc.description.references Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Synergistic effect of high hydrostatic pressure pre-treatment and osmotic stress on mass transfer during osmotic dehydration. Journal of Food Engineering, 45, 25–31. es_ES
dc.description.references Rastogi, N.K., (2010). Effect of high pressure on textural and microstructural properties of fruits and vegetables. In: Novel Food Processing. Effects on reological and functional properties.CRC, New York. es_ES
dc.description.references Seguí, L., Fito, P. J., & Fito, P. (2013). A study on the rehydration ability of isolated apple cells after osmotic dehydration treatments. Journal of Food Engineering, 115, 145–153. es_ES
dc.description.references Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effect on quality, total ascorbic acid, phenolic and flaonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349–357. es_ES
dc.description.references Tangwongchai, R., Ledward, D. A., & Ames, J. A. (2000). Effect of high pressure treatment on the texture of cherry tomato. Journal of Agriculture and Food Chemistry, 48, 1434–41. es_ES
dc.description.references Tokusoglu, O., Alpas, H., & Bozoglu, F. (2010). High hydrostatic pressure effect on mold flora, citrinin mycotoxin, hydroxytyrosol, oleuropein phenolic and antioxidant activity of black table olives. Innovative Food Science and Emerging Technologies, 11, 250–258. es_ES
dc.description.references Trejo-Araya, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., et al. (2007). Understanding textureof high pressure processed fresh carrots: a microstructural and biochemical approach. Journal of Food Engineering, 80, 873–884. es_ES
dc.description.references Van Buggenhout, S., Grauwet, T., Van Loey, A., & Hendrickx, M. (2007). Effect of high-pressure induced ice I/ice III-transition on the texture and microstructure of fresh and pretreated carrots and strawberries. Food Research International, 40, 1276–1285. es_ES
dc.description.references Wennberg, M., & Nyman, M. (2004). On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oleraceae var. capitata). Innovative Food Science and Emerging Technologies, 5, 171–177. es_ES
dc.description.references Yang, B., Jiang, Y., Wang, R., Zhao, M., & Sun, J. (2009). Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chemistry, 112, 428–431. es_ES
dc.description.references Zheng, Y., Wang, S. Y., Wang, C. Y., & Zheng, W. (2007). Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT- Food Science and Technology, 40, 49–57. es_ES
dc.description.references Zura-Bravo, L., Vega-Gálvez, A., Lemus-Mondaca, R., Kong Shun, A.-H., & Di Scala, K. (2011). Effect of temperature on rehydration kinetics, functional properties, texture and antioxidant activity of red pepper var hungarian (Capsicum Annuum L.). Journal of Food Processing and Preservation. doi: 10.1111/j.1745-4549.2011.00623.x . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem