Mostrar el registro sencillo del ítem
dc.contributor.author | Oliveira, Luis M. L. | es_ES |
dc.contributor.author | Rodrigues, Joel J. P. C. | es_ES |
dc.contributor.author | de Sousa, Amaro F. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2014-11-10T15:12:14Z | |
dc.date.available | 2014-11-10T15:12:14Z | |
dc.date.issued | 2013-01 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/44026 | |
dc.description.abstract | Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by National Funding from the FCT - Fundacao para a Ciencia e Tecnologia through the Pest-OE/EEI/LA0008/2011, by the AAL4ALL project (Ambient Assisted Living for All), co-funded by COMPETE under FEDER via QREN Programme, and by the LOPIX QREN Project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | wireless sensor networks | es_ES |
dc.subject | WSN | es_ES |
dc.subject | 6LoWPAN | es_ES |
dc.subject | network access control | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A Network Access Control Framework for 6LoWPAN Networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s130101210 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PEst-OE%2FEEI%2FLA0008%2F2011/PT/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Oliveira, LML.; Rodrigues, JJPC.; De Sousa, AF.; Lloret, J. (2013). A Network Access Control Framework for 6LoWPAN Networks. Sensors. 13(1):1210-1230. doi:10.3390/s130101210 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s130101210 | es_ES |
dc.description.upvformatpinicio | 1210 | es_ES |
dc.description.upvformatpfin | 1230 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 265791 | |
dc.identifier.pmid | 23334610 | en_EN |
dc.identifier.pmcid | PMC3574732 | en_EN |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Instituto de Telecomunicações, Portugal | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc4919.txt | es_ES |
dc.description.references | Oliveira, L. M. L., de Sousa, A. F., & Rodrigues, J. J. P. C. (2011). Routing and mobility approaches in IPv6 over LoWPAN mesh networks. International Journal of Communication Systems, 24(11), 1445-1466. doi:10.1002/dac.1228 | es_ES |
dc.description.references | Gershenfeld, N., Krikorian, R., & Cohen, D. (2004). The Internet of Things. Scientific American, 291(4), 76-81. doi:10.1038/scientificamerican1004-76 | es_ES |
dc.description.references | Hui, J. W., & Culler, D. E. (2008). Extending IP to Low-Power, Wireless Personal Area Networks. IEEE Internet Computing, 12(4), 37-45. doi:10.1109/mic.2008.79 | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc4861.txt | es_ES |
dc.description.references | Wang, Y., Attebury, G., & Ramamurthy, B. (2006). A survey of security issues in wireless sensor networks. IEEE Communications Surveys & Tutorials, 8(2), 2-23. doi:10.1109/comst.2006.315852 | es_ES |
dc.description.references | Oliveira, L. M. L., Rodrigues, J. J. P. C., de Sousa, A. F., & Lloret, J. (2012). Denial of service mitigation approach for IPv6-enabled smart object networks. Concurrency and Computation: Practice and Experience, 25(1), 129-142. doi:10.1002/cpe.2850 | es_ES |
dc.description.references | Xiaojiang Du, & Hsiao-Hwa Chen. (2008). Security in wireless sensor networks. IEEE Wireless Communications, 15(4), 60-66. doi:10.1109/mwc.2008.4599222 | es_ES |
dc.description.references | Pelechrinis, K., Iliofotou, M., & Krishnamurthy, S. V. (2011). Denial of Service Attacks in Wireless Networks: The Case of Jammers. IEEE Communications Surveys & Tutorials, 13(2), 245-257. doi:10.1109/surv.2011.041110.00022 | es_ES |
dc.description.references | Lopez, J., Roman, R., & Alcaraz, C. (2009). Analysis of Security Threats, Requirements, Technologies and Standards in Wireless Sensor Networks. Lecture Notes in Computer Science, 289-338. doi:10.1007/978-3-642-03829-7_10 | es_ES |
dc.description.references | Elaine Shi, & Perrig, A. (2004). Designing Secure Sensor Networks. IEEE Wireless Communications, 11(6), 38-43. doi:10.1109/mwc.2004.1368895 | es_ES |
dc.description.references | Roman, R., Lopez, J., & Gritzalis, S. (2008). Situation awareness mechanisms for wireless sensor networks. IEEE Communications Magazine, 46(4), 102-107. doi:10.1109/mcom.2008.4481348 | es_ES |
dc.description.references | Sakarindr, P., & Ansari, N. (2007). Security services in group communications over wireless infrastructure, mobile ad hoc, and wireless sensor networks. IEEE Wireless Communications, 14(5), 8-20. doi:10.1109/mwc.2007.4396938 | es_ES |
dc.description.references | Khan, M. K., & Alghathbar, K. (2010). Cryptanalysis and Security Improvements of ‘Two-Factor User Authentication in Wireless Sensor Networks’. Sensors, 10(3), 2450-2459. doi:10.3390/s100302450 | es_ES |
dc.description.references | Xiao, Y., Rayi, V. K., Sun, B., Du, X., Hu, F., & Galloway, M. (2007). A survey of key management schemes in wireless sensor networks. Computer Communications, 30(11-12), 2314-2341. doi:10.1016/j.comcom.2007.04.009 | es_ES |
dc.description.references | Kun Sun, Peng Ning, & Wang, C. (2005). Fault-Tolerant Cluster-Wise Clock Synchronization for Wireless Sensor Networks. IEEE Transactions on Dependable and Secure Computing, 2(3), 177-189. doi:10.1109/tdsc.2005.36 | es_ES |
dc.description.references | Perrig, A., Szewczyk, R., Tygar, J. D., Wen, V., & Culler, D. E. (2002). Wireless Networks, 8(5), 521-534. doi:10.1023/a:1016598314198 | es_ES |
dc.description.references | Araz, O., & Qi, H. (2006). Load-balanced key establishment methodologies in wireless sensor networks. International Journal of Security and Networks, 1(3/4), 158. doi:10.1504/ijsn.2006.011775 | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc4944.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc6550.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc4862.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc4291.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc3971.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc5548.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc5673.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc5826.txt | es_ES |
dc.description.references | http://www.ietf.org/rfc/rfc5867.txt | es_ES |
dc.description.references | Jeonggil Ko, Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96-101. doi:10.1109/mcom.2011.5741163 | es_ES |
dc.description.references | Mottola, L., & Picco, G. P. (2011). Programming wireless sensor networks. ACM Computing Surveys, 43(3), 1-51. doi:10.1145/1922649.1922656 | es_ES |
dc.description.references | Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., & Silva, F. (2003). Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking, 11(1), 2-16. doi:10.1109/tnet.2002.808417 | es_ES |
dc.description.references | Deluge T2-TinyOS Documentation Wikihttp://docs.tinyos.net/tinywiki/index.php/Deluge_T2 | es_ES |