Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández-Breis, Jesualdo Tomás | es_ES |
dc.contributor.author | Maldonado Segura, José Alberto | es_ES |
dc.contributor.author | Marcos, Marc | es_ES |
dc.contributor.author | Legaz-García, María del Carmen | es_ES |
dc.contributor.author | Moner Cano, David | es_ES |
dc.contributor.author | Torres-Sospedra, Joaquín | es_ES |
dc.contributor.author | Esteban-Gil, Angel | es_ES |
dc.contributor.author | Martínez-Salvador, Begoña | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.date.accessioned | 2014-11-18T11:36:25Z | |
dc.date.available | 2014-11-18T11:36:25Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1067-5027 | |
dc.identifier.uri | http://hdl.handle.net/10251/44370 | |
dc.description.abstract | Introduction The secondary use of Electronic Healthcare Records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, Virtual Health Records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. Our main objective is to develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. Materials and Methods We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (i.e., data level) and the rest using ontologies (i.e., knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. Results We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data has been used and the patients have been successfully classified by the risk of developing colorectal cancer. Conclusion This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies and classification rules can be designed. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economia y Competitividad and the FEDER program through grants TIN2010-21388-C01 and TIN2010-21388-C02. MCLG was supported by the Fundacion Seneca through grant 15555/FPI/2010. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | BMJ Publishing Group | es_ES |
dc.relation.ispartof | Journal of the American Medical Informatics Association | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Medical Informatics | es_ES |
dc.subject | Electronic Health Records/standards | es_ES |
dc.subject | Semantics | es_ES |
dc.subject | Decision Support Systems | es_ES |
dc.subject | Clinical | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1136/amiajnl-2013-001923 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-21388-C02-02/ES/HERRAMIENTAS INTELIGENTES PARA ENLAZAR HISTORIAS CLINICAS ELECTRONICAS Y SISTEMAS DE ENSAYOS CLINICOS II/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-21388-C02-01/ES/HERRAMIENTAS INTELIGENTES PARA ENLAZAR HISTORIAS CLINICAS ELECTRONICAS CON SISTEMAS DE ENSAYOS CLINICOS-I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//15555%2FFPI%2F2010/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Fernández-Breis, JT.; Maldonado Segura, JA.; Marcos, M.; Legaz-García, MDC.; Moner Cano, D.; Torres-Sospedra, J.; Esteban-Gil, A.... (2013). Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts. Journal of the American Medical Informatics Association. 20(E2):288-296. https://doi.org/10.1136/amiajnl-2013-001923 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1136/amiajnl-2013-001923 | es_ES |
dc.description.upvformatpinicio | 288 | es_ES |
dc.description.upvformatpfin | 296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | E2 | es_ES |
dc.relation.senia | 252212 | |
dc.identifier.pmcid | PMC3861938 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cuggia, M., Besana, P., & Glasspool, D. (2011). Comparing semi-automatic systems for recruitment of patients to clinical trials. International Journal of Medical Informatics, 80(6), 371-388. doi:10.1016/j.ijmedinf.2011.02.003 | es_ES |
dc.description.references | Sujansky, W. (2001). Heterogeneous Database Integration in Biomedicine. Journal of Biomedical Informatics, 34(4), 285-298. doi:10.1006/jbin.2001.1024 | es_ES |
dc.description.references | Schadow G Russler DC Mead CN . Integrating medical information and knowledge in the HL7 RIM. Proceedings of the AMIA Symposium, 2000:764–8. | es_ES |
dc.description.references | Johnson PD Tu SW Musen MA . A virtual medical record for guideline-based decision support. Proceedings of the AMIA 2001 Annual Symposium, 294–8. | es_ES |
dc.description.references | German, E., Leibowitz, A., & Shahar, Y. (2009). An architecture for linking medical decision-support applications to clinical databases and its evaluation. Journal of Biomedical Informatics, 42(2), 203-218. doi:10.1016/j.jbi.2008.10.007 | es_ES |
dc.description.references | Peleg, M., Keren, S., & Denekamp, Y. (2008). Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). Journal of Biomedical Informatics, 41(1), 180-201. doi:10.1016/j.jbi.2007.05.003 | es_ES |
dc.description.references | Maldonado, J. A., Costa, C. M., Moner, D., Menárguez-Tortosa, M., Boscá, D., Miñarro Giménez, J. A., … Robles, M. (2012). Using the ResearchEHR platform to facilitate the practical application of the EHR standards. Journal of Biomedical Informatics, 45(4), 746-762. doi:10.1016/j.jbi.2011.11.004 | es_ES |
dc.description.references | Parker CG Rocha RA Campbell JR . Detailed clinical models for sharable, executable guidelines. Stud Health Technol Inform 2004;107:145–8. | es_ES |
dc.description.references | Clinical Information Modeling Initiative. http://informatics.mayo.edu/CIMI/index.php/Main_Page (accessed Jun 2013). | es_ES |
dc.description.references | W3C, OWL2 Web Ontology Language. http://www.w3.org/TR/owl2-overview/ (accessed Jun 2013). | es_ES |
dc.description.references | European Commission. Semantic interoperability for better health and safer healthcare. Deployment and research roadmap for Europe. ISBN-13: 978-92-79-11139-6, 2009. | es_ES |
dc.description.references | SemanticHealthNet. http://www.semantichealthnet.eu/ (accessed Jun 2013). | es_ES |
dc.description.references | Martínez-Costa, C., Menárguez-Tortosa, M., Fernández-Breis, J. T., & Maldonado, J. A. (2009). A model-driven approach for representing clinical archetypes for Semantic Web environments. Journal of Biomedical Informatics, 42(1), 150-164. doi:10.1016/j.jbi.2008.05.005 | es_ES |
dc.description.references | Iqbal AM . An OWL-DL ontology for the HL7 reference information model. Toward useful services for elderly and people with disabilities Berlin: Springer, 2011:168–75. | es_ES |
dc.description.references | Tao, C., Jiang, G., Oniki, T. A., Freimuth, R. R., Zhu, Q., Sharma, D., … Chute, C. G. (2012). A semantic-web oriented representation of the clinical element model for secondary use of electronic health records data. Journal of the American Medical Informatics Association, 20(3), 554-562. doi:10.1136/amiajnl-2012-001326 | es_ES |
dc.description.references | Heymans, S., McKennirey, M., & Phillips, J. (2011). Semantic validation of the use of SNOMED CT in HL7 clinical documents. Journal of Biomedical Semantics, 2(1), 2. doi:10.1186/2041-1480-2-2 | es_ES |
dc.description.references | Menárguez-Tortosa, M., & Fernández-Breis, J. T. (2013). OWL-based reasoning methods for validating archetypes. Journal of Biomedical Informatics, 46(2), 304-317. doi:10.1016/j.jbi.2012.11.009 | es_ES |
dc.description.references | Lezcano, L., Sicilia, M.-A., & Rodríguez-Solano, C. (2011). Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules. Journal of Biomedical Informatics, 44(2), 343-353. doi:10.1016/j.jbi.2010.11.005 | es_ES |
dc.description.references | Tao C Wongsuphasawat K Clark K . Towards event sequence representation, reasoning and visualization for EHR data. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI'12). New York, NY, USA: ACM:801–6. | es_ES |
dc.description.references | Bodenreider O . Biomedical ontologies in action: role in knowledge management, data integration and decision support. IMIA Yearbook of Medical Informatics 2008;67–79. | es_ES |
dc.description.references | Beale T . Archetypes. Constraint-based domain models for future-proof information systems. http://www.openehr.org/files/publications/archetypes/archetypes_beale_web_2000.pdf | es_ES |
dc.description.references | SNOMED-CT. http://www.ihtsdo.org/snomed-ct/ (accessed Jun 2013). | es_ES |
dc.description.references | UMLS Terminology Services. https://uts.nlm.nih.gov/home.html (accessed Jun 2013). | es_ES |
dc.description.references | The openEHR Foundation, openEHR Clinical Knowledge Manager. http://www.openehr.org/knowledge/ (accessed Jun 2013). | es_ES |
dc.description.references | Maldonado, J. A., Moner, D., Boscá, D., Fernández-Breis, J. T., Angulo, C., & Robles, M. (2009). LinkEHR-Ed: A multi-reference model archetype editor based on formal semantics. International Journal of Medical Informatics, 78(8), 559-570. doi:10.1016/j.ijmedinf.2009.03.006 | es_ES |
dc.description.references | SAXON XSLT and XQuery processor. http://saxon.sourceforge.net/ (accessed Jun 2013). | es_ES |
dc.description.references | NCBO Bioportal. http://bioportal.bioontology.org/ (accessed Jun 2013). | es_ES |
dc.description.references | The Protégé Ontology Editor and Knowledge Acquisition System. http://protege.stanford.edu/ (accessed Jun 2013). | es_ES |
dc.description.references | Semantic Web Integration Tool. http://sele.inf.um.es/swit (accessed Jun 2013). | es_ES |
dc.description.references | Hermit Reasoner. http://www.hermit-reasoner.com/ (accessed Jun 2013). | es_ES |
dc.description.references | The OWLAPI. http://owlapi.sourceforge.net/ (accessed Jun 2013). | es_ES |
dc.description.references | Institute for Health Metrics and Evaluation. Global Burden of Disease. http://www.healthmetricsandevaluation.org/gbd (accessed Jun 2013). | es_ES |
dc.description.references | Segnan N Patnick J von Karsa L . European guidelines for quality assurance in colorectal cancer screening and diagnosis 2010. First Edition. European Union. ISBN 978-92-79-16435-4. | es_ES |
dc.description.references | W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/ (accessed Jun 2013). | es_ES |
dc.description.references | DL Query. http://protegewiki.stanford.edu/wiki/DL_Query (accessed Jun 2013). | es_ES |
dc.description.references | SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/ (accessed Jun 2013). | es_ES |
dc.description.references | Semantic Web Rule Language. http://www.w3.org/Submission/SWRL/ (accessed Jun 2013). | es_ES |
dc.description.references | Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Boscá, D., & Robles, M. (2013). Interoperability of clinical decision-support systems and electronic health records using archetypes: A case study in clinical trial eligibility. Journal of Biomedical Informatics, 46(4), 676-689. doi:10.1016/j.jbi.2013.05.004 | es_ES |
dc.description.references | Marcos, M., Maldonado, J. A., Martínez-Salvador, B., Moner, D., Boscá, D., & Robles, M. (2011). An Archetype-Based Solution for the Interoperability of Computerised Guidelines and Electronic Health Records. Lecture Notes in Computer Science, 276-285. doi:10.1007/978-3-642-22218-4_35 | es_ES |
dc.description.references | MobiGuide: Guiding patients anytime everywhere. http://www.mobiguide-project.eu/ (accessed Jun 2013). | es_ES |
dc.description.references | EURECA: Enabling information re-Use by linking clinical RE search and Care. http://eurecaproject.eu/ (accessed Jun 2013). | es_ES |
dc.description.references | Rea, S., Pathak, J., Savova, G., Oniki, T. A., Westberg, L., Beebe, C. E., … Chute, C. G. (2012). Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: The SHARPn project. Journal of Biomedical Informatics, 45(4), 763-771. doi:10.1016/j.jbi.2012.01.009 | es_ES |
dc.description.references | Clinical Element Models. http://informatics.mayo.edu/sharp/index.php/CEMS (accessed Jun 2013). | es_ES |