Mostrar el registro sencillo del ítem
dc.contributor.author | Bès, Juan P. | es_ES |
dc.contributor.author | Martin, Özgür | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.contributor.author | Shkarin, Stanislav A. | |
dc.date.accessioned | 2014-11-24T10:15:18Z | |
dc.date.available | 2014-11-24T10:15:18Z | |
dc.date.issued | 2012-09-01 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | http://hdl.handle.net/10251/44602 | |
dc.description.abstract | Chan and Shapiro showed that each (non-trivial) translation operator f(z){mapping} Tλf(z+λ) acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C 0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T, T 2) is not d-mixing. © 2012 Elsevier Inc | es_ES |
dc.description.sponsorship | The first and the third authors are supported in part by MICINN and FEDER, Project MTM2010-14909. The third author is also supported by Generalitat Valenciana, Project PROMETEO/2008/101. We would like to thank the referee whose careful reading and suggestions produced a great improvement in the presentation of the article. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Functional Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Disjoint mixing | es_ES |
dc.subject | Hypercyclic operators | es_ES |
dc.subject | Mixing operators | es_ES |
dc.subject | Banach-Spaces | es_ES |
dc.subject | Existence | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Disjoint mixing operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jfa.2012.05.018 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bès, JP.; Martin, Ö.; Peris Manguillot, A.; Shkarin, SA. (2012). Disjoint mixing operators. Journal of Functional Analysis. 263(5):1283-1322. https://doi.org/10.1016/j.jfa.2012.05.018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jfa.2012.05.018 | es_ES |
dc.description.upvformatpinicio | 1283 | es_ES |
dc.description.upvformatpfin | 1322 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 263 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 223599 | |
dc.identifier.eissn | 1096-0783 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |