- -

Disjoint mixing operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Disjoint mixing operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bès, Juan P. es_ES
dc.contributor.author Martin, Özgür es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.contributor.author Shkarin, Stanislav A.
dc.date.accessioned 2014-11-24T10:15:18Z
dc.date.available 2014-11-24T10:15:18Z
dc.date.issued 2012-09-01
dc.identifier.issn 0022-1236
dc.identifier.uri http://hdl.handle.net/10251/44602
dc.description.abstract Chan and Shapiro showed that each (non-trivial) translation operator f(z){mapping} Tλf(z+λ) acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C 0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T, T 2) is not d-mixing. © 2012 Elsevier Inc es_ES
dc.description.sponsorship The first and the third authors are supported in part by MICINN and FEDER, Project MTM2010-14909. The third author is also supported by Generalitat Valenciana, Project PROMETEO/2008/101. We would like to thank the referee whose careful reading and suggestions produced a great improvement in the presentation of the article. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Disjoint mixing es_ES
dc.subject Hypercyclic operators es_ES
dc.subject Mixing operators es_ES
dc.subject Banach-Spaces es_ES
dc.subject Existence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Disjoint mixing operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2012.05.018
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bès, JP.; Martin, Ö.; Peris Manguillot, A.; Shkarin, SA. (2012). Disjoint mixing operators. Journal of Functional Analysis. 263(5):1283-1322. https://doi.org/10.1016/j.jfa.2012.05.018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jfa.2012.05.018 es_ES
dc.description.upvformatpinicio 1283 es_ES
dc.description.upvformatpfin 1322 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 263 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 223599
dc.identifier.eissn 1096-0783
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem