- -

Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs

Show simple item record

Files in this item

dc.contributor.author Escalante Fernández, José María es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Laude, Vincent es_ES
dc.date.accessioned 2014-11-25T10:33:21Z
dc.date.available 2014-11-25T10:33:21Z
dc.date.issued 2014-02-14
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/44795
dc.description.abstract We present the design of two waveguides (ladder and slot-ladder waveguides) implemented in a silicon honeycomb photonic-phononic crystal slab, which can support slow electromagnetic and elastic guided modes simultaneously. Interestingly, the photonic bandgap extends along the first Brillouin zone; so with an appropriate design, we can suppress propagation losses that arise coupling to radiative modes. From the phononic point of view, we explain the slow elastic wave effect by considering the waveguide as a chain of coupled acoustic resonators (coupled resonant acoustic waveguide), which provides the mechanism for slow elastic wave propagation. The ladder waveguide moreover supports guided phononic modes outside the phononic bandgap, similar to photonic slab modes, resulting in highly confined phononic modes propagating with low losses. Such waveguides could find important applications to the observation of optomechanical and electrostriction effects, as well as to enhanced stimulated Brillouin scattering and other opto-acoustical effects in nanoscale silicon structures. We also suggest that they can be the basis for a "perfect" photonic-phononic cavity in which damping by coupling to the surroundings is completely forbidden. es_ES
dc.description.sponsorship Financial support from the multidisciplinary project of UPV, PAID-05-12 (CE 20130141). en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation multidisciplinary project of UPV PAID-05-12 es_ES
dc.relation multidisciplinary project of UPV CE 20130141 es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Waveguides es_ES
dc.subject Optomechanics es_ES
dc.subject Photon-phonon interaction es_ES
dc.subject Photonic crystals es_ES
dc.subject Photonic band gap es_ES
dc.subject Crystal slabs es_ES
dc.subject Phonons es_ES
dc.subject Periodic structures es_ES
dc.subject Phononic Crystals es_ES
dc.subject Phoxonic crystal waveguides es_ES
dc.subject Optomechanical coupling es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4864661
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Escalante Fernández, JM.; Martínez Abietar, AJ.; Laude, V. (2014). Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics. 115(6):64302-64307. doi:10.1063/1.4864661 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4864661 es_ES
dc.description.upvformatpinicio 64302 es_ES
dc.description.upvformatpfin 64307 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 257679


This item appears in the following Collection(s)

Show simple item record