- -

Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escalante Fernández, José María es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Laude, Vincent es_ES
dc.date.accessioned 2014-11-25T10:33:21Z
dc.date.available 2014-11-25T10:33:21Z
dc.date.issued 2014-02-14
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/44795
dc.description.abstract We present the design of two waveguides (ladder and slot-ladder waveguides) implemented in a silicon honeycomb photonic-phononic crystal slab, which can support slow electromagnetic and elastic guided modes simultaneously. Interestingly, the photonic bandgap extends along the first Brillouin zone; so with an appropriate design, we can suppress propagation losses that arise coupling to radiative modes. From the phononic point of view, we explain the slow elastic wave effect by considering the waveguide as a chain of coupled acoustic resonators (coupled resonant acoustic waveguide), which provides the mechanism for slow elastic wave propagation. The ladder waveguide moreover supports guided phononic modes outside the phononic bandgap, similar to photonic slab modes, resulting in highly confined phononic modes propagating with low losses. Such waveguides could find important applications to the observation of optomechanical and electrostriction effects, as well as to enhanced stimulated Brillouin scattering and other opto-acoustical effects in nanoscale silicon structures. We also suggest that they can be the basis for a "perfect" photonic-phononic cavity in which damping by coupling to the surroundings is completely forbidden. es_ES
dc.description.sponsorship Financial support from the multidisciplinary project of UPV, PAID-05-12 (CE 20130141). en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Waveguides es_ES
dc.subject Optomechanics es_ES
dc.subject Photon-phonon interaction es_ES
dc.subject Photonic crystals es_ES
dc.subject Photonic band gap es_ES
dc.subject Crystal slabs es_ES
dc.subject Phonons es_ES
dc.subject Periodic structures es_ES
dc.subject Phononic Crystals es_ES
dc.subject Phoxonic crystal waveguides es_ES
dc.subject Optomechanical coupling es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4864661
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Escalante Fernández, JM.; Martínez Abietar, AJ.; Laude, V. (2014). Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics. 115(6):64302-64307. https://doi.org/10.1063/1.4864661 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4864661 es_ES
dc.description.upvformatpinicio 64302 es_ES
dc.description.upvformatpfin 64307 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 257679
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 es_ES
dc.description.references Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-y es_ES
dc.description.references Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 es_ES
dc.description.references Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164 es_ES
dc.description.references Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524 es_ES
dc.description.references Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690 es_ES
dc.description.references Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301 es_ES
dc.description.references Papanikolaou, N., Psarobas, I. E., & Stefanou, N. (2010). Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 96(23), 231917. doi:10.1063/1.3453448 es_ES
dc.description.references SoljaČiĆ, M., & Joannopoulos, J. D. (2004). Enhancement of nonlinear effects using photonic crystals. Nature Materials, 3(4), 211-219. doi:10.1038/nmat1097 es_ES
dc.description.references Khelif, A., Mohammadi, S., Eftekhar, A. A., Adibi, A., & Aoubiza, B. (2010). Acoustic confinement and waveguiding with a line-defect structure in phononic crystal slabs. Journal of Applied Physics, 108(8), 084515. doi:10.1063/1.3500226 es_ES
dc.description.references Escalante, J. M., Martínez, A., & Laude, V. (2013). Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. Journal of Physics D: Applied Physics, 46(47), 475301. doi:10.1088/0022-3727/46/47/475301 es_ES
dc.description.references Adibi, A., Yong Xu, Lee, R. K., Yariv, A., & Scherer, A. (2000). Properties of the slab modes in photonic crystal optical waveguides. Journal of Lightwave Technology, 18(11), 1554-1564. doi:10.1109/50.896217 es_ES
dc.description.references Adibi, A., Xu, Y., Lee, R. K., Yariv, A., & Scherer, A. (2001). Guiding mechanisms in dielectric-core photonic-crystal optical waveguides. Physical Review B, 64(3). doi:10.1103/physrevb.64.033308 es_ES
dc.description.references Krautkrämer, J., & Krautkrämer, H. (1990). Ultrasonic Testing of Materials. doi:10.1007/978-3-662-10680-8 es_ES
dc.description.references Puerto, D., Griol, A., Escalante, J. M., Pennec, Y., Djafari-Rouhani, B., Beugnot, J., … Martinez, A. (2012). Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab. IEEE Photonics Technology Letters, 24(22), 2056-2059. doi:10.1109/lpt.2012.2219516 es_ES
dc.description.references Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320 es_ES
dc.description.references Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M., & Painter, O. (2010). Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 97(18), 181106. doi:10.1063/1.3507288 es_ES
dc.description.references Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726 es_ES
dc.description.references Shin, H., Qiu, W., Jarecki, R., Cox, J. A., Olsson, R. H., Starbuck, A., … Rakich, P. T. (2013). Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Communications, 4(1). doi:10.1038/ncomms2943 es_ES
dc.description.references Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem