Mostrar el registro sencillo del ítem
dc.contributor.author | Escalante Fernández, José María | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Laude, Vincent | es_ES |
dc.date.accessioned | 2014-11-25T10:33:21Z | |
dc.date.available | 2014-11-25T10:33:21Z | |
dc.date.issued | 2014-02-14 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.uri | http://hdl.handle.net/10251/44795 | |
dc.description.abstract | We present the design of two waveguides (ladder and slot-ladder waveguides) implemented in a silicon honeycomb photonic-phononic crystal slab, which can support slow electromagnetic and elastic guided modes simultaneously. Interestingly, the photonic bandgap extends along the first Brillouin zone; so with an appropriate design, we can suppress propagation losses that arise coupling to radiative modes. From the phononic point of view, we explain the slow elastic wave effect by considering the waveguide as a chain of coupled acoustic resonators (coupled resonant acoustic waveguide), which provides the mechanism for slow elastic wave propagation. The ladder waveguide moreover supports guided phononic modes outside the phononic bandgap, similar to photonic slab modes, resulting in highly confined phononic modes propagating with low losses. Such waveguides could find important applications to the observation of optomechanical and electrostriction effects, as well as to enhanced stimulated Brillouin scattering and other opto-acoustical effects in nanoscale silicon structures. We also suggest that they can be the basis for a "perfect" photonic-phononic cavity in which damping by coupling to the surroundings is completely forbidden. | es_ES |
dc.description.sponsorship | Financial support from the multidisciplinary project of UPV, PAID-05-12 (CE 20130141). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Journal of Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Waveguides | es_ES |
dc.subject | Optomechanics | es_ES |
dc.subject | Photon-phonon interaction | es_ES |
dc.subject | Photonic crystals | es_ES |
dc.subject | Photonic band gap | es_ES |
dc.subject | Crystal slabs | es_ES |
dc.subject | Phonons | es_ES |
dc.subject | Periodic structures | es_ES |
dc.subject | Phononic Crystals | es_ES |
dc.subject | Phoxonic crystal waveguides | es_ES |
dc.subject | Optomechanical coupling | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4864661 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-12/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Escalante Fernández, JM.; Martínez Abietar, AJ.; Laude, V. (2014). Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics. 115(6):64302-64307. https://doi.org/10.1063/1.4864661 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4864661 | es_ES |
dc.description.upvformatpinicio | 64302 | es_ES |
dc.description.upvformatpfin | 64307 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 257679 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Maldovan, M., & Thomas, E. L. (2006). Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 88(25), 251907. doi:10.1063/1.2216885 | es_ES |
dc.description.references | Maldovan, M., & Thomas, E. L. (2006). Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 83(4), 595-600. doi:10.1007/s00340-006-2241-y | es_ES |
dc.description.references | Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M.-P., & Laude, V. (2009). Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 106(7), 074912. doi:10.1063/1.3243276 | es_ES |
dc.description.references | Mohammadi, S., Eftekhar, A. A., Khelif, A., & Adibi, A. (2010). Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Optics Express, 18(9), 9164. doi:10.1364/oe.18.009164 | es_ES |
dc.description.references | Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., & Painter, O. (2009). Optomechanical crystals. Nature, 462(7269), 78-82. doi:10.1038/nature08524 | es_ES |
dc.description.references | Laude, V., Beugnot, J.-C., Benchabane, S., Pennec, Y., Djafari-Rouhani, B., Papanikolaou, N., … Martinez, A. (2011). Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Optics Express, 19(10), 9690. doi:10.1364/oe.19.009690 | es_ES |
dc.description.references | Pennec, Y., Rouhani, B. D., El Boudouti, E. H., Li, C., El Hassouani, Y., Vasseur, J. O., … Martinez, A. (2010). Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Optics Express, 18(13), 14301. doi:10.1364/oe.18.014301 | es_ES |
dc.description.references | Papanikolaou, N., Psarobas, I. E., & Stefanou, N. (2010). Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 96(23), 231917. doi:10.1063/1.3453448 | es_ES |
dc.description.references | SoljaČiĆ, M., & Joannopoulos, J. D. (2004). Enhancement of nonlinear effects using photonic crystals. Nature Materials, 3(4), 211-219. doi:10.1038/nmat1097 | es_ES |
dc.description.references | Khelif, A., Mohammadi, S., Eftekhar, A. A., Adibi, A., & Aoubiza, B. (2010). Acoustic confinement and waveguiding with a line-defect structure in phononic crystal slabs. Journal of Applied Physics, 108(8), 084515. doi:10.1063/1.3500226 | es_ES |
dc.description.references | Escalante, J. M., Martínez, A., & Laude, V. (2013). Dispersion relation of coupled-resonator acoustic waveguides formed by defect cavities in a phononic crystal. Journal of Physics D: Applied Physics, 46(47), 475301. doi:10.1088/0022-3727/46/47/475301 | es_ES |
dc.description.references | Adibi, A., Yong Xu, Lee, R. K., Yariv, A., & Scherer, A. (2000). Properties of the slab modes in photonic crystal optical waveguides. Journal of Lightwave Technology, 18(11), 1554-1564. doi:10.1109/50.896217 | es_ES |
dc.description.references | Adibi, A., Xu, Y., Lee, R. K., Yariv, A., & Scherer, A. (2001). Guiding mechanisms in dielectric-core photonic-crystal optical waveguides. Physical Review B, 64(3). doi:10.1103/physrevb.64.033308 | es_ES |
dc.description.references | Krautkrämer, J., & Krautkrämer, H. (1990). Ultrasonic Testing of Materials. doi:10.1007/978-3-662-10680-8 | es_ES |
dc.description.references | Puerto, D., Griol, A., Escalante, J. M., Pennec, Y., Djafari-Rouhani, B., Beugnot, J., … Martinez, A. (2012). Honeycomb Photonic Crystal Waveguides in a Suspended Silicon Slab. IEEE Photonics Technology Letters, 24(22), 2056-2059. doi:10.1109/lpt.2012.2219516 | es_ES |
dc.description.references | Song, B.-S., Noda, S., Asano, T., & Akahane, Y. (2005). Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 4(3), 207-210. doi:10.1038/nmat1320 | es_ES |
dc.description.references | Safavi-Naeini, A. H., Alegre, T. P. M., Winger, M., & Painter, O. (2010). Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 97(18), 181106. doi:10.1063/1.3507288 | es_ES |
dc.description.references | Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S., & Painter, O. (2012). Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101(8), 081115. doi:10.1063/1.4747726 | es_ES |
dc.description.references | Shin, H., Qiu, W., Jarecki, R., Cox, J. A., Olsson, R. H., Starbuck, A., … Rakich, P. T. (2013). Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Communications, 4(1). doi:10.1038/ncomms2943 | es_ES |
dc.description.references | Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gröblacher, S., … Painter, O. (2011). Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478(7367), 89-92. doi:10.1038/nature10461 | es_ES |