- -

Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems

Show simple item record

Files in this item

dc.contributor.author Pang, Xiaodan es_ES
dc.contributor.author Beltrán, Marta es_ES
dc.contributor.author Sánchez Vílchez, José Manuel es_ES
dc.contributor.author Pellicer, Eloy es_ES
dc.contributor.author Olmos, J. J. Vegas es_ES
dc.contributor.author Llorente Sáez, Roberto es_ES
dc.contributor.author Monroy, Idelfonso Tafur es_ES
dc.date.accessioned 2014-12-03T07:58:33Z
dc.date.available 2014-12-03T07:58:33Z
dc.date.issued 2014-01-01
dc.identifier.issn 1943-0620
dc.identifier.uri http://hdl.handle.net/10251/45127
dc.description Publisher copyright and source must be acknowledged with citation. Must link to publisher version with DOI. es_ES
dc.description.abstract [EN] In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services for each DWDM user can be simultaneously supported. Besides, each baseband channel can be transparently upconverted to multiple radio-frequency (RF) bands for different wireless standards, which can be flexibly filtered at the end user to select the on-demand RF band, depending on the wireless applications. For demonstration, we transmit a 2.5 Gbit∕s signal through the proposed system and successfully achieve a bit-error-rate (BER) performance well below the 7% overhead forward error correction limit of the BER of 2 × 10−3 for both the wireline and the wireless signals in the 60 GHz band after 25 km single-mode fiber plus up to 6 m wireless distance. es_ES
dc.description.sponsorship This work was supported in part by the EU Commission within the WISCON project of the Marie Curie Program and the FP7 ICT-249142 FIVER, as well as the Spain Plan Nacional ULTRADEF project. en_EN
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE/OSA Journal of Optical Communications and Networking es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dense wavelength division multiplexing es_ES
dc.subject Millimeter-wave es_ES
dc.subject Optical frequency comb es_ES
dc.subject Radio over fiber. es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/JOCN.6.000001
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/249142/EU/Fully-Converged Quintuple-Play Integrated Optical-Wireless Access Architectures/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pang, X.; Beltrán, M.; Sánchez Vílchez, JM.; Pellicer, E.; Olmos, JJV.; Llorente Sáez, R.; Monroy, IT. (2014). Centralized Optical-Frequency-Comb-Based RF Carrier Generator for DWDM Fiber-Wireless Access Systems. IEEE/OSA Journal of Optical Communications and Networking. 6(1):1-7. https://doi.org/10.1364/JOCN.6.000001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/JOCN.6.000001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 258069
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía, Industria y Competitividad
dc.description.references Prince, K., Jensen, J. B., Caballero, A., Xianbin Yu, Gibbon, T. B., Zibar, D., … Monroy, I. T. (2009). Converged Wireline and Wireless Access Over a 78-km Deployed Fiber Long-Reach WDM PON. IEEE Photonics Technology Letters, 21(17), 1274-1276. doi:10.1109/lpt.2009.2025699 es_ES
dc.description.references Kuri, T., Toda, H., & Kitayama, K. (2003). Dense wavelength-division multiplexing millimeter-wave-band radio-on-fiber signal transmission with photonic downconversion. Journal of Lightwave Technology, 21(6), 1510-1517. doi:10.1109/jlt.2003.812465 es_ES
dc.description.references Jianjun Yu, Jinxing Gu, Xiang Liu, Zhensheng Jia, & Gee-Kung Chang. (2005). Seamless integration of an 8/spl times/2.5 Gb/s WDM-PON and radio-over-fiber using all-optical up-conversion based on Raman-assisted FWM. IEEE Photonics Technology Letters, 17(9), 1986-1988. doi:10.1109/lpt.2005.853526 es_ES
dc.description.references Zhensheng Jia, Jianjun Yu, & Gee-Kung Chang. (2005). All-optical 16 /spl times/ 2.5 Gb/s WDM signal simultaneous up-conversion based on XPM in an NOLM in ROF systems. IEEE Photonics Technology Letters, 17(12), 2724-2726. doi:10.1109/lpt.2005.859168 es_ES
dc.description.references Jia, Z., Yu, J., Ellinas, G., & Chang, G.-K. (2007). Key Enabling Technologies for Optical–Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology, 25(11), 3452-3471. doi:10.1109/jlt.2007.909201 es_ES
dc.description.references Shih, P.-T., Lin, C.-T., Jiang, W.-J., Chen, J. (Jyehong), Huang, H.-S., Chen, Y.-H., … Chi, S. (2009). WDM up-conversion employing frequency quadrupling in optical modulator. Optics Express, 17(3), 1726. doi:10.1364/oe.17.001726 es_ES
dc.description.references Jianjun Yu, Zhensheng Jia, Lei Xu, Lin Chen, Ting Wang, & Gee-Kung Chang. (2006). DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver. IEEE Photonics Technology Letters, 18(13), 1418-1420. doi:10.1109/lpt.2006.877226 es_ES
dc.description.references Olmos, J. J. V., Kuri, T., Sono, T., Tamura, K., Toda, H., & Kitayama, K. (2008). Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network. Journal of Lightwave Technology, 26(15), 2506-2512. doi:10.1109/jlt.2008.927162 es_ES
dc.description.references Moraitis, N., & Constantinou, P. (2006). Measurements and characterization of wideband indoor radio channel at 60 GHz. IEEE Transactions on Wireless Communications, 5(4), 880-889. doi:10.1109/twc.2006.1618937 es_ES
dc.description.references Chen, C., Zhang, C., Liu, D., Qiu, K., & Liu, S. (2012). Tunable optical frequency comb enabled scalable and cost-effective multiuser orthogonal frequency-division multiple access passive optical network with source-free optical network units. Optics Letters, 37(19), 3954. doi:10.1364/ol.37.003954 es_ES
dc.description.references Chen, C., Jin, W., Zhang, C. F., Qiu, K., & Zhang, W. (2013). Hybrid WDM-OFDMA-PON utilising tunable generation of flat optical comb. Electronics Letters, 49(4), 276-277. doi:10.1049/el.2013.0031 es_ES
dc.description.references Wu, R., Supradeepa, V. R., Long, C. M., Leaird, D. E., & Weiner, A. M. (2010). Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Optics Letters, 35(19), 3234. doi:10.1364/ol.35.003234 es_ES
dc.description.references Islam, A. H. M. R., Bakaul, M., Nirmalathas, A., & Town, G. E. (2012). Simplification of millimeter-wave radio-over-fiber system employing heterodyning of uncorrelated optical carriers and self-homodyning of RF signal at the receiver. Optics Express, 20(5), 5707. doi:10.1364/oe.20.005707 es_ES
dc.description.references Xiaodan Pang, Caballero, A., Dogadaev, A., Arlunno, V., Deng, L., Borkowski, R., … Tafur Monroy, I. (2012). 25 Gbit/s QPSK Hybrid Fiber-Wireless Transmission in the W-Band (75–110 GHz) With Remote Antenna Unit for In-Building Wireless Networks. IEEE Photonics Journal, 4(3), 691-698. doi:10.1109/jphot.2012.2193563 es_ES
dc.description.references Lie-Liang Yang. (2006). MIMO-assisted space-code-division multiple-access: linear detectors and performance over multipath fading channels. IEEE Journal on Selected Areas in Communications, 24(1), 121-131. doi:10.1109/jsac.2005.858892 es_ES


This item appears in the following Collection(s)

Show simple item record