- -

Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling

Show full item record

García Gómez, JM.; Benedí Ruiz, JM.; Vicente Robledo, J.; Robles Viejo, M. (2005). Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling. International Journal of Bioinformatics Research and Applications. 1(3):305-318. doi:10.1504/IJBRA.2005.007908

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45150

Files in this item

Item Metadata

Title: Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling
Author: García Gómez, Juan Miguel Benedí Ruiz, José Miguel Vicente Robledo, Javier Robles Viejo, Montserrat
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Issued date:
Abstract:
[EN] In this paper, a new method for modelling tRNA secondary structures is presented. This method is based on the combination of stochastic context-free grammars (SCFG) and Hidden Markov Models (HMM). HMM are used to ...[+]
Subjects: Hidden Markov Models (HMM) , RNA , Secondary structure modelling , Language modelling , Grammatical inference , Stochastic context-free grammar (SCFG) , Syntactic pattern recognition
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Bioinformatics Research and Applications. (issn: 1744-5485 )
DOI: 10.1504/IJBRA.2005.007908
Publisher:
Inderscience
Publisher version: http://dx.doi.org/10.1504/IJBRA.2005.007908
Thanks:
We would like to thank Diego Linares and Joan Andreu Sanchez for answering all our questions about SCFG, as well as Satoshi Sekine for his evaluation software. We would also like to thank the Ministerio de Sanidad y Consumo ...[+]
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record