- -

Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez, Arturo es_ES
dc.contributor.author Alcaraz, Raul es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2014-12-04T18:14:57Z
dc.date.available 2014-12-04T18:14:57Z
dc.date.issued 2012-12
dc.identifier.issn 0967-3334
dc.identifier.uri http://hdl.handle.net/10251/45192
dc.description.abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, increasing the risk of stroke and all-cause mortality. Its mechanisms are poorly understood, thus leading to different theories and controversial interpretation of its behavior. In this respect, it is unknown why AF is self-terminating in certain individuals, which is called paroxysmal AF (PAF), and not in others. Within the context of biomedical signal analysis, predicting the onset of PAF with a reasonable advance has been a clinical challenge in recent years. By predicting arrhythmia onset, the loss of normal sinus rhythm could be addressed by means of preventive treatments, thus minimizing risks for the patients and improving their quality of life. Traditionally, the study of PAF onset has been undertaken through a variety of features characterizing P-wave spatial diversity from the standard 12-lead electrocardiogram (ECG) or from signal-averaged ECGs. However, the variability of features from the P-wave time course before PAF onset has not been exploited yet. This work introduces a new alternative to assess time diversity of the P-wave features from single-lead ECG recordings. Furthermore, the method is able to assess the risk of arrhythmia 1 h before its onset, which is a relevant advance in order to provide clinically useful PAF risk predictors. Results were in agreement with the electrophysiological changes taking place in the atria. Hence, P-wave features presented an increasing variability as PAF onset approximates, thus suggesting intermittently disturbed conduction in the atrial tissue. In addition, high PAF risk prediction accuracy, greater than 90%, has been reached in the two considered scenarios, i.e. discrimination between healthy individuals and PAF patients and between patients far from PAF and close to PAF onset. Nonetheless, more long-term studies have to be analyzed and validated in future works. es_ES
dc.description.sponsorship This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrocardiogram es_ES
dc.subject Paroxysmal atrial fibrillation es_ES
dc.subject Prediction es_ES
dc.subject P-wave analysis es_ES
dc.subject Time course es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/33/12/1959
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Martinez, A.; Alcaraz, R.; Rieta, JJ. (2012). Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation. Physiological Measurement. 33(12):1959-1974. https://doi.org/10.1088/0967-3334/33/12/1959 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0967-3334/33/12/1959 es_ES
dc.description.upvformatpinicio 1959 es_ES
dc.description.upvformatpfin 1974 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 239035
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005 es_ES
dc.description.references AYTEMIR, K., OZER, N., ATALAR, E., SADE, E., AKSOYEK, S., OVUNC, K., … KES, S. (2000). P Wave Dispersion on 12-Lead Electrocardiography in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 23(7), 1109-1112. doi:10.1111/j.1540-8159.2000.tb00910.x es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Carlson, J., Johansson, R., & Olsson, S. B. (2001). Classification of electrocardiographic P-wave morphology. IEEE Transactions on Biomedical Engineering, 48(4), 401-405. doi:10.1109/10.915704 es_ES
dc.description.references Censi, F., Calcagnini, G., Corazza, I., Mattei, E., Triventi, M., Bartolini, P., & Boriani, G. (2012). On the resolution of ECG acquisition systems for the reliable analysis of the P-wave. Physiological Measurement, 33(2), N11-N17. doi:10.1088/0967-3334/33/2/n11 es_ES
dc.description.references Censi, F., Calcagnini, G., Ricci, C., Ricci, R. P., Santini, M., Grammatico, A., & Bartolini, P. (2007). P-Wave Morphology Assessment by a Gaussian Functions-Based Model in Atrial Fibrillation Patients. IEEE Transactions on Biomedical Engineering, 54(4), 663-672. doi:10.1109/tbme.2006.890134 es_ES
dc.description.references Censi, F., Calcagnini, G., Triventi, M., Mattei, E., Bartolini, P., Corazza, I., & Boriani, G. (2009). Effect of high-pass filtering on ECG signal on the analysis of patients prone to atrial fibrillation. Annali dell Istituto Superiore di Sanità, 45(4). doi:10.1590/s0021-25712009000400012 es_ES
dc.description.references CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x es_ES
dc.description.references Cheng, S. (2009). Long-term Outcomes in Individuals With Prolonged PR Interval or First-Degree Atrioventricular Block. JAMA, 301(24), 2571. doi:10.1001/jama.2009.888 es_ES
dc.description.references Chesnokov, Y. V. (2008). Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artificial Intelligence in Medicine, 43(2), 151-165. doi:10.1016/j.artmed.2008.03.009 es_ES
dc.description.references Chiarugi, F., Varanini, M., Cantini, F., Conforti, F., & Vrouchos, G. (2007). Noninvasive ECG as a Tool for Predicting Termination of Paroxysmal Atrial Fibrillation. IEEE Transactions on Biomedical Engineering, 54(8), 1399-1406. doi:10.1109/tbme.2007.890741 es_ES
dc.description.references Clavier, L., Boucher, J.-M., Lepage, R., Blanc, J.-J., & Cornily, J.-C. (2002). Automatic P-wave analysis of patients prone to atrial fibrillation. Medical & Biological Engineering & Computing, 40(1), 63-71. doi:10.1007/bf02347697 es_ES
dc.description.references Daoud, E. G., Bogun, F., Goyal, R., Harvey, M., Man, K. C., Strickberger, S. A., & Morady, F. (1996). Effect of Atrial Fibrillation on Atrial Refractoriness in Humans. Circulation, 94(7), 1600-1606. doi:10.1161/01.cir.94.7.1600 es_ES
dc.description.references Dilaveris, P. E., & Gialafos, J. E. (2001). P-Wave Dispersion: A Novel Predictor of Paroxysmal Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 6(2), 159-165. doi:10.1111/j.1542-474x.2001.tb00101.x es_ES
dc.description.references Dilaveris, P. E., Gialafos, E. J., Sideris, S. K., Theopistou, A. M., Andrikopoulos, G. K., Kyriakidis, M., … Toutouzas, P. K. (1998). Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. American Heart Journal, 135(5), 733-738. doi:10.1016/s0002-8703(98)70030-4 es_ES
dc.description.references Dilaveris, P. E., & Gialafos, J. E. (2002). Cardiac Electrophysiology Review, 6(3), 221-224. doi:10.1023/a:1016320807103 es_ES
dc.description.references Dimmer, C., Tavernier, R., Gjorgov, N., Van Nooten, G., Clement, D. L., & Jordaens, L. (1998). Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting. The American Journal of Cardiology, 82(1), 22-25. doi:10.1016/s0002-9149(98)00231-8 es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 114(7). doi:10.1161/circulationaha.106.177292 es_ES
dc.description.references Gallagher, M. M., & Camm, J. (1998). Classification of atrial fibrillation. The American Journal of Cardiology, 82(7), 18N-28N. doi:10.1016/s0002-9149(98)00736-x es_ES
dc.description.references Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370 es_ES
dc.description.references Hayn, D., Kollmann, A., & Schreier, G. (2007). Predicting initiation and termination of atrial fibrillation from the ECG. Biomedizinische Technik/Biomedical Engineering, 52(1), 5-10. doi:10.1515/bmt.2007.003 es_ES
dc.description.references Hickey, B., Heneghan, C., & De Chazal, P. (2004). Non-Episode-Dependent Assessment of Paroxysmal Atrial Fibrillation Through Measurement of RR Interval Dynamics and Atrial Premature Contractions. Annals of Biomedical Engineering, 32(5), 677-687. doi:10.1023/b:abme.0000030233.39769.a4 es_ES
dc.description.references Hogue, C. W., Domitrovich, P. P., Stein, P. K., Despotis, G. D., Re, L., Schuessler, R. B., … Rottman, J. N. (1998). RR Interval Dynamics Before Atrial Fibrillation in Patients After Coronary Artery Bypass Graft Surgery. Circulation, 98(5), 429-434. doi:10.1161/01.cir.98.5.429 es_ES
dc.description.references Ishida, K., Hayashi, H., Miyamoto, A., Sugimoto, Y., Ito, M., Murakami, Y., & Horie, M. (2010). P wave and the development of atrial fibrillation. Heart Rhythm, 7(3), 289-294. doi:10.1016/j.hrthm.2009.11.012 es_ES
dc.description.references Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic Features of Chronic Atrial Fibrillation. New England Journal of Medicine, 306(17), 1018-1022. doi:10.1056/nejm198204293061703 es_ES
dc.description.references Kannel, W. ., Wolf, P. ., Benjamin, E. ., & Levy, D. (1998). Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates 11Reprints are not available. The American Journal of Cardiology, 82(7), 2N-9N. doi:10.1016/s0002-9149(98)00583-9 es_ES
dc.description.references Magnani, J. W., Mazzini, M. J., Sullivan, L. M., Williamson, M., Ellinor, P. T., & Benjamin, E. J. (2010). P-Wave Indices, Distribution and Quality Control Assessment (from the Framingham Heart Study). Annals of Noninvasive Electrocardiology, 15(1), 77-84. doi:10.1111/j.1542-474x.2009.00343.x es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 es_ES
dc.description.references Mohebbi, M., & Ghassemian, H. (2011). Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal. Physiological Measurement, 32(8), 1147-1162. doi:10.1088/0967-3334/32/8/010 es_ES
dc.description.references Mohebbi, M., & Ghassemian, H. (2012). Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Computer Methods and Programs in Biomedicine, 105(1), 40-49. doi:10.1016/j.cmpb.2010.07.011 es_ES
dc.description.references Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007 es_ES
dc.description.references Passman, R., Beshai, J., Pavri, B., & Kimmel, S. (2001). Predicting post–coronary bypass surgery atrial arrhythmias from the preoperative electrocardiogram. American Heart Journal, 142(5), 806-810. doi:10.1067/mhj.2001.118736 es_ES
dc.description.references Perez, M. V., Dewey, F. E., Marcus, R., Ashley, E. A., Al-Ahmad, A. A., Wang, P. J., & Froelicher, V. F. (2009). Electrocardiographic predictors of atrial fibrillation. American Heart Journal, 158(4), 622-628. doi:10.1016/j.ahj.2009.08.002 es_ES
dc.description.references Petrutiu, S., Sahakian, A. V., & Swiryn, S. (2007). Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. EP Europace, 9(7), 466-470. doi:10.1093/europace/eum096 es_ES
dc.description.references Prystowsky, E. N. (2000). Management of atrial fibrillation: therapeutic options and clinical decisions. The American Journal of Cardiology, 85(10), 3-11. doi:10.1016/s0002-9149(00)00908-5 es_ES
dc.description.references Ros, E., Mota, S., Fernández, F. J., Toro, F. J., & Bernier, J. L. (2004). ECG Characterization of paroxysmal atrial fibrillation: parameter extraction and automatic diagnosis algorithm. Computers in Biology and Medicine, 34(8), 679-696. doi:10.1016/j.compbiomed.2003.10.002 es_ES
dc.description.references SAVELIEVA, I., & CAMM, A. J. (2000). Silent Atrial Fibrillation-Another Pandora’s Box. Pacing and Clinical Electrophysiology, 23(2), 145-148. doi:10.1111/j.1540-8159.2000.tb00794.x es_ES
dc.description.references Shin, D.-G., Yoo, C.-S., Yi, S.-H., Bae, J.-H., Kim, Y.-J., Park, J.-S., & Hong, G.-R. (2006). Prediction of Paroxysmal Atrial Fibrillation Using Nonlinear Analysis of the R-R Interval Dynamics Before the Spontaneous Onset of Atrial Fibrillation. Circulation Journal, 70(1), 94-99. doi:10.1253/circj.70.94 es_ES
dc.description.references Sovilj, S., Van Oosterom, A., Rajsman, G., & Magjarevic, R. (2010). ECG-based prediction of atrial fibrillation development following coronary artery bypass grafting. Physiological Measurement, 31(5), 663-677. doi:10.1088/0967-3334/31/5/005 es_ES
dc.description.references Thong, T., McNames, J., Aboy, M., & Goldstein, B. (2004). Prediction of Paroxysmal Atrial Fibrillation by Analysis of Atrial Premature Complexes. IEEE Transactions on Biomedical Engineering, 51(4), 561-569. doi:10.1109/tbme.2003.821030 es_ES
dc.description.references Tuzcu, V., Nas, S., Börklü, T., & Ugur, A. (2006). Decrease in the heart rate complexity prior to the onset of atrial fibrillation. EP Europace, 8(6), 398-402. doi:10.1093/europace/eul031 es_ES
dc.description.references Uhley, H. (2001). Determination of Risk for Atrial Fibrillation Utilizing Precise P Wave Duration-Measuring Methodology. Preventive Cardiology, 4(2), 81-84. doi:10.1111/j.1520-037x.2001.00530.x es_ES
dc.description.references Vikman, S., Mäkikallio, T. H., Yli-Mäyry, S., Pikkujämsä, S., Koivisto, A.-M., Reinikainen, P., … Huikuri, H. V. (1999). Altered Complexity and Correlation Properties of R-R Interval Dynamics Before the Spontaneous Onset of Paroxysmal Atrial Fibrillation. Circulation, 100(20), 2079-2084. doi:10.1161/01.cir.100.20.2079 es_ES
dc.description.references Wolf, P. A., Dawber, T. R., Thomas, H. E., & Kannel, W. B. (1978). Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: The fiamingham Study. Neurology, 28(10), 973-973. doi:10.1212/wnl.28.10.973 es_ES
dc.description.references Wolf, P. A., Mitchell, J. B., Baker, C. S., Kannel, W. B., & D’Agostino, R. B. (1998). Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs. Archives of Internal Medicine, 158(3), 229. doi:10.1001/archinte.158.3.229 es_ES
dc.description.references Yamada, T. (1999). Dispersion of signal-averaged P wave duration on precordial body surface in patients with paroxysmal atrial fibrillation. European Heart Journal, 20(3), 211-220. doi:10.1053/euhj.1998.1281 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem