- -

Visual-based human action recognition on smart phones based on 2D and 3D descriptors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visual-based human action recognition on smart phones based on 2D and 3D descriptors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bosch Jorge, Marc es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.contributor.author Ricolfe Viala, Carlos es_ES
dc.date.accessioned 2014-12-05T11:43:51Z
dc.date.available 2014-12-05T11:43:51Z
dc.date.issued 2013-01
dc.identifier.issn 0218-0014
dc.identifier.uri http://hdl.handle.net/10251/45224
dc.description.abstract The aim of this work is to present a visual-based human action recognition system which is adapted to constrained embedded devices, such as smart phones. Basically, vision-based human action recognition is a combination of feature-tracking, descriptor-extraction and subsequent classication of image representations, with a color-based identification tool to distinguish between multiple human subjects. Simple descriptors sets were evaluated to optimize recognition rate and performance and 2D descriptors were found to be effective. These sets installed on the latest phones can recognize human actions in videos in less than one second with a success rate of over 82%. es_ES
dc.language Inglés es_ES
dc.publisher World Scientific Publishing es_ES
dc.relation.ispartof International Journal of Pattern Recognition and Artificial Intelligence es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Surveillance es_ES
dc.subject Smart home es_ES
dc.subject Visual-based Human action recognition es_ES
dc.subject 2D and 3D descriptors es_ES
dc.subject SVM es_ES
dc.subject Smart phones es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Visual-based human action recognition on smart phones based on 2D and 3D descriptors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0218001412600099
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Bosch Jorge, M.; Sánchez Salmerón, AJ.; Ricolfe Viala, C. (2013). Visual-based human action recognition on smart phones based on 2D and 3D descriptors. International Journal of Pattern Recognition and Artificial Intelligence. 26(8):1-16. doi:10.1142/S0218001412600099 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1142/S0218001412600099 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 238782
dc.description.references Aggarwal, J. K., & Cai, Q. (1999). Human Motion Analysis: A Review. Computer Vision and Image Understanding, 73(3), 428-440. doi:10.1006/cviu.1998.0744 es_ES
dc.description.references Jodoin, P.-M. (2010). Comparative study of background subtraction algorithms. Journal of Electronic Imaging, 19(3), 033003. doi:10.1117/1.3456695 es_ES
dc.description.references Van den Bergh, M., Koller-Meier, E., & Van Gool, L. (2009). Real-Time Body Pose Recognition Using 2D or 3D Haarlets. International Journal of Computer Vision, 83(1), 72-84. doi:10.1007/s11263-009-0218-0 es_ES
dc.description.references Bobick, A. F. (1997). Movement, activity and action: the role of knowledge in the perception of motion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1257-1265. doi:10.1098/rstb.1997.0108 es_ES
dc.description.references Bramberger, M., Doblander, A., Maier, A., Rinner, B., & Schwabach, H. (2006). Distributed Embedded Smart Cameras for Surveillance Applications. Computer, 39(2), 68-75. doi:10.1109/mc.2006.55 es_ES
dc.description.references Cook, D. J., & Das, S. K. (2007). How smart are our environments? An updated look at the state of the art. Pervasive and Mobile Computing, 3(2), 53-73. doi:10.1016/j.pmcj.2006.12.001 es_ES
dc.description.references Criminisi, A. (2000). International Journal of Computer Vision, 40(2), 123-148. doi:10.1023/a:1026598000963 es_ES
dc.description.references DAVIDSSON, P., & BOMAN, M. (2005). Distributed monitoring and control of office buildings by embedded agents. Information Sciences, 171(4), 293-307. doi:10.1016/j.ins.2004.09.007 es_ES
dc.description.references Escobar, M.-J., Masson, G. S., Vieville, T., & Kornprobst, P. (2009). Action Recognition Using a Bio-Inspired Feedforward Spiking Network. International Journal of Computer Vision, 82(3), 284-301. doi:10.1007/s11263-008-0201-1 es_ES
dc.description.references Felzenszwalb, P. F., & Huttenlocher, D. P. (2005). Pictorial Structures for Object Recognition. International Journal of Computer Vision, 61(1), 55-79. doi:10.1023/b:visi.0000042934.15159.49 es_ES
dc.description.references Fleck, S., & Strasser, W. (2008). Smart Camera Based Monitoring System and Its Application to Assisted Living. Proceedings of the IEEE, 96(10), 1698-1714. doi:10.1109/jproc.2008.928765 es_ES
dc.description.references Forsyth, D. A., Arikan, O., Ikemoto, L., O’Brien, J., & Ramanan, D. (2005). Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis. Foundations and Trends® in Computer Graphics and Vision, 1(2/3), 77-254. doi:10.1561/0600000005 es_ES
dc.description.references Gall, J., Rosenhahn, B., Brox, T., & Seidel, H.-P. (2008). Optimization and Filtering for Human Motion Capture. International Journal of Computer Vision, 87(1-2), 75-92. doi:10.1007/s11263-008-0173-1 es_ES
dc.description.references Gavrila, D. . (1999). The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding, 73(1), 82-98. doi:10.1006/cviu.1998.0716 es_ES
dc.description.references Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201-211. doi:10.3758/bf03212378 es_ES
dc.description.references Julier, S. J., & Uhlmann, J. K. (2004). Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE, 92(3), 401-422. doi:10.1109/jproc.2003.823141 es_ES
dc.description.references Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2-3), 90-126. doi:10.1016/j.cviu.2006.08.002 es_ES
dc.description.references Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., & Hahnel, D. (2004). Inferring Activities from Interactions with Objects. IEEE Pervasive Computing, 3(4), 50-57. doi:10.1109/mprv.2004.7 es_ES
dc.description.references Radke, R. J., Andra, S., Al-Kofahi, O., & Roysam, B. (2005). Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing, 14(3), 294-307. doi:10.1109/tip.2004.838698 es_ES
dc.description.references Ricolfe-Viala, C., & Sánchez-Salmerón, A.-J. (2010). Robust metric calibration of non-linear camera lens distortion. Pattern Recognition, 43(4), 1688-1699. doi:10.1016/j.patcog.2009.10.003 es_ES
dc.description.references Ricolfe Viala, C., & Sánchez Salmerón, A. J. (2008). Procedimiento completo para el calibrado de cámaras utilizando una plantilla plana. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(1), 93-101. doi:10.1016/s1697-7912(08)70126-2 es_ES
dc.description.references Turaga, P., Chellappa, R., Subrahmanian, V. S., & Udrea, O. (2008). Machine Recognition of Human Activities: A Survey. IEEE Transactions on Circuits and Systems for Video Technology, 18(11), 1473-1488. doi:10.1109/tcsvt.2008.2005594 es_ES
dc.description.references Velastin, S. A., & Remagnino, P. (Eds.). (2006). Intelligent Distributed Video Surveillance Systems. doi:10.1049/pbpc005e es_ES
dc.description.references Wang, L., Hu, W., & Tan, T. (2003). Recent developments in human motion analysis. Pattern Recognition, 36(3), 585-601. doi:10.1016/s0031-3203(02)00100-0 es_ES
dc.description.references Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104. doi:10.1038/scientificamerican0991-94 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem