- -

Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta Ibañez, José Joaquín es_ES
dc.date.accessioned 2014-12-11T13:06:06Z
dc.date.available 2014-12-11T13:06:06Z
dc.date.issued 2012
dc.identifier.issn 1748-670X
dc.identifier.uri http://hdl.handle.net/10251/45360
dc.description.abstract Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice, thus, being the subject of intensive research both in medicine and engineering. Wavelet Entropy (WE) is a measure of the disorder degree of a specific phenomena in both time and frequency domains, allowing to reveal underlying dynamical processes out of sight for other methods. The present work introduces two different WE applications to the electrocardiogram (ECG) of patients in AF. The first application predicts the spontaneous termination of paroxysmal AF (PAF), whereas the second one deals with the electrical cardioversion (ECV) outcome in persistent AF patients. In both applications, WE was used with the objective of assessing the atrial fibrillatory ( f ) waves organization. Structural changes into the f waves reflect the atrial activity organization variation, and this fact can be used to predict AF progression. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity, and accuracy were 95.38%, 91.67%, and 93.60%, respectively. On the other hand, for ECV outcome prediction, 85.24% sensitivity, 81.82% specificity, and 84.05% accuracy were obtained. These results turn WE as the highest single predictor of spontaneous PAF termination and ECV outcome, thus being a promising tool to characterize non-invasive AF signals. es_ES
dc.description.sponsorship This work was supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation and PPII11-0194-8121 and PII1C09-0036-3237 from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Computational and Mathematical Methods in Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial fibrillation es_ES
dc.subject ECG es_ES
dc.subject Signal processing es_ES
dc.subject Wavelet transform es_ES
dc.subject Sample Entropy es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2012/245213
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Rieta Ibañez, JJ. (2012). Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG. Computational and Mathematical Methods in Medicine. 2012(245213):1-9. https://doi.org/10.1155/2012/245213 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2012/245213 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.description.issue 245213 es_ES
dc.relation.senia 239045
dc.identifier.pmid 23056146 en_EN
dc.identifier.pmcid PMC3463933 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 114(7). doi:10.1161/circulationaha.106.177292 es_ES
dc.description.references Gallagher, M. M., & Camm, J. (1998). Classification of atrial fibrillation. The American Journal of Cardiology, 82(7), 18N-28N. doi:10.1016/s0002-9149(98)00736-x es_ES
dc.description.references Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 es_ES
dc.description.references Allessie, M. A., Konings, K., Kirchhof, C. J. H. J., & Wijffels, M. (1996). Electrophysiologic mechanisms of perpetuation of atrial fibrillation. The American Journal of Cardiology, 77(3), 10A-23A. doi:10.1016/s0002-9149(97)89114-x es_ES
dc.description.references Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941 es_ES
dc.description.references TAKAHASHI, Y., SANDERS, P., JAIS, P., HOCINI, M., DUBOIS, R., ROTTER, M., … HAISSAGUERRE, M. (2006). Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation. Journal of Cardiovascular Electrophysiology, 17(4), 382-388. doi:10.1111/j.1540-8167.2005.00414.x es_ES
dc.description.references Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007 es_ES
dc.description.references Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., & Başar, E. (2001). Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods, 105(1), 65-75. doi:10.1016/s0165-0270(00)00356-3 es_ES
dc.description.references Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505 es_ES
dc.description.references Al-Khatib, S. M., Wilkinson, W. E., Sanders, L. L., McCarthy, E. A., & Pritchett, E. L. C. (2000). Observations on the transition from intermittent to permanent atrial fibrillation. American Heart Journal, 140(1), 142-145. doi:10.1067/mhj.2000.107547 es_ES
dc.description.references GALL, N. P., & MURGATROYD, F. D. (2007). Electrical Cardioversion for AF?The State of the Art. Pacing and Clinical Electrophysiology, 30(4), 554-567. doi:10.1111/j.1540-8159.2007.00709.x es_ES
dc.description.references Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 es_ES
dc.description.references Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 es_ES
dc.description.references Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiological Measurement, 29(1), 65-80. doi:10.1088/0967-3334/29/1/005 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2008). A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Medical & Biological Engineering & Computing, 46(7), 625-635. doi:10.1007/s11517-008-0348-5 es_ES
dc.description.references Rafiee, J., Rafiee, M. A., Prause, N., & Schoen, M. P. (2011). Wavelet basis functions in biomedical signal processing. Expert Systems with Applications, 38(5), 6190-6201. doi:10.1016/j.eswa.2010.11.050 es_ES
dc.description.references Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological Measurement, 26(5), R155-R199. doi:10.1088/0967-3334/26/5/r01 es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Sample entropy of the main atrial wave predicts spontaneous termination of paroxysmal atrial fibrillation. Medical Engineering & Physics, 31(8), 917-922. doi:10.1016/j.medengphy.2009.05.002 es_ES
dc.description.references ALCARAZ, R., HORNERO, F., & RIETA, J. J. (2011). Noninvasive Time and Frequency Predictors of Long-Standing Atrial Fibrillation Early Recurrence after Electrical Cardioversion. Pacing and Clinical Electrophysiology, 34(10), 1241-1250. doi:10.1111/j.1540-8159.2011.03125.x es_ES
dc.description.references Alcaraz, R., & Rieta, J. J. (2009). Time and frequency recurrence analysis of persistent atrial fibrillation after electrical cardioversion. Physiological Measurement, 30(5), 479-489. doi:10.1088/0967-3334/30/5/005 es_ES
dc.description.references Alcaraz, R., Rieta, J. J., & Hornero, F. (2008). Caracterización no invasiva de la actividad auricular durante los instantes previos a la terminación de la fibrilación auricular paroxística. Revista Española de Cardiología, 61(2), 154-160. doi:10.1157/13116203 es_ES
dc.description.references Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010 es_ES
dc.description.references Holmqvist, F. (2006). Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation. European Heart Journal, 27(18), 2201-2207. doi:10.1093/eurheartj/ehl098 es_ES
dc.description.references PALINKAS, A. (2001). Clinical value of left atrial appendage flow velocity for predicting of cardioversion success in patients with non-valvular atrial fibrillation*1. European Heart Journal, 22(23), 2201-2208. doi:10.1053/euhj.2001.2891 es_ES
dc.description.references Holmqvist, F., Stridh, M., Waktare, J. E. P., Roijer, A., Sörnmo, L., Platonov, P. G., & Meurling, C. J. (2006). Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. EP Europace, 8(8), 559-565. doi:10.1093/europace/eul072 es_ES
dc.description.references Sun, R., & Wang, Y. (2008). Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot. Medical Engineering & Physics, 30(9), 1105-1111. doi:10.1016/j.medengphy.2008.01.008 es_ES
dc.description.references Watson, J. N., Addison, P. S., Uchaipichat, N., Shah, A. S., & Grubb, N. R. (2007). Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Computers in Biology and Medicine, 37(4), 517-523. doi:10.1016/j.compbiomed.2006.08.003 es_ES
dc.description.references ZOHAR, P., KOVACIC, M., BREZOCNIK, M., & PODBREGAR, M. (2005). Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace, 7(5), 500-507. doi:10.1016/j.eupc.2005.04.007 es_ES
dc.description.references Pan, Y.-H., Wang, Y.-H., Liang, S.-F., & Lee, K.-T. (2011). Fast computation of sample entropy and approximate entropy in biomedicine. Computer Methods and Programs in Biomedicine, 104(3), 382-396. doi:10.1016/j.cmpb.2010.12.003 es_ES
dc.description.references Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510 es_ES
dc.description.references LAU, C.-P., & LOK, N.-S. (1997). A Comparison of Transvenous Atrial Defibrillation of Acute and Chronic Atrial Fibrillation and the Effect of Intravenous Sotalol on Human Atrial Defibrillation Threshold. Pacing and Clinical Electrophysiology, 20(10), 2442-2452. doi:10.1111/j.1540-8159.1997.tb06084.x es_ES
dc.description.references NDREPEPA, G., KARCH, M. R., SCHNEIDER, M. A. E., WEYERBROCK, S., SCHREIECK, J., DEISENHOFER, I., … SCHMITT, C. (2002). Characterization of Paroxysmal and Persistent Atrial Fibrillation in the Human Left Atrium During Initiation and Sustained Episodes. Journal of Cardiovascular Electrophysiology, 13(6), 525-532. doi:10.1046/j.1540-8167.2002.00525.x es_ES
dc.description.references Sih, H. J., Zipes, D. P., Berbari, E. J., Adams, D. E., & Olgin, J. E. (2000). Differences in organization between acute and chronic atrial fibrillation in dogs. Journal of the American College of Cardiology, 36(3), 924-931. doi:10.1016/s0735-1097(00)00788-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem