Mostrar el registro sencillo del ítem
dc.contributor.author | Cervigón Abad, Raquel | es_ES |
dc.contributor.author | Moreno, J. | es_ES |
dc.contributor.author | Reilly, Richard | es_ES |
dc.contributor.author | Perez-Villacastin, J. | es_ES |
dc.contributor.author | Castells Ramón, Francisco Sales | es_ES |
dc.date.accessioned | 2014-12-12T14:37:17Z | |
dc.date.available | 2014-12-12T14:37:17Z | |
dc.date.issued | 2012-10 | |
dc.identifier.issn | 0967-3334 | |
dc.identifier.uri | http://hdl.handle.net/10251/45409 | |
dc.description.abstract | The mechanism underlying atrial fibrillation (AF) remains poorly understood. Multiple wandering propagation wavelets drifting through both atria under hierarchical models are not understood. Some pharmacological drugs, known as antiarrhythmics, modify the cardiac ionic currents supporting the fibrillation process within the atria and may modify the AF propagation dynamics terminating the fibrillation process. Other medications, theoretically non-antiarrhythmic, may slightly affect the fibrillation process in non-defined mechanisms. We evaluated whether the most commonly used anaesthetic agent, propofol, affects AF patterns. Partial least-squares (PLS) analysis was performed to reduce significant noise into the main latent variables to find the differences between groups. The final results showed an excellent discrimination between groups with slow atrial activity during the propofol infusion. © 2012 Institute of Physics and Engineering in Medicine. © 2012 Institute of Physics and Engineering in Medicine. | es_ES |
dc.description.sponsorship | This work was supported by the Ministry of Education and Science of Spain. (Ref: EASI TEC2009-13939). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Physiological Measurement | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Anaesthetic | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Partial least-squares (PLS) | es_ES |
dc.subject | Principal component analysis (PCA) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0967-3334/33/10/1757 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-13939/ES/Desarrollo De Tecnicas Avanzadas De Analisis Y Caracterizacion De Mapas De Propagacion Para La Ayuda Al Diagnostico Electrocardiografico./ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.description.bibliographicCitation | Cervigón Abad, R.; Moreno, J.; Reilly, R.; Perez-Villacastin, J.; Castells Ramón, FS. (2012). Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares. Physiological Measurement. 33(10):1757-1768. doi:10.1088/0967-3334/33/10/1757 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0967-3334/33/10/1757 | es_ES |
dc.description.upvformatpinicio | 1757 | es_ES |
dc.description.upvformatpfin | 1768 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.senia | 238105 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Akselrod, S., Gordon, D., Ubel, F., Shannon, D., Berger, A., & Cohen, R. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220-222. doi:10.1126/science.6166045 | es_ES |
dc.description.references | BOLLMANN, A., SONNE, K., ESPERER, H.-D., TOEPFFER, I., & KLEIN, H. U. (2000). Circadian Variations in Atrial Fibrillatory Frequency in Persistent Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 23(11P2), 1867-1871. doi:10.1111/j.1540-8159.2000.tb07040.x | es_ES |
dc.description.references | Botteron, G. W., & Smith, J. M. (1995). A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Transactions on Biomedical Engineering, 42(6), 579-586. doi:10.1109/10.387197 | es_ES |
dc.description.references | Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 | es_ES |
dc.description.references | Cervigón, R., Moreno, J., Castells, F., Mateo, J., Sánchez, C., Pérez-Villacastín, J., & Millet, J. (2008). Anesthesia with propofol slows atrial fibrillation dominant frequencies. Computers in Biology and Medicine, 38(7), 792-798. doi:10.1016/j.compbiomed.2008.04.007 | es_ES |
dc.description.references | Cervigón, R., Moreno, J., Millet, J., Pérez-Villacastín, J., & Castells, F. (2010). Propofol Effects on Atrial Fibrillation Wavefront Delays. IEEE Transactions on Biomedical Engineering, 57(8), 1877-1885. doi:10.1109/tbme.2009.2037312 | es_ES |
dc.description.references | CHIANG, C.-M. J., JENKINS, J. M., & DiCARLO, L. A. (1994). Digital Signal Processing Chip Implementation for Detection and Analysis of Intracardiac Electrograms. Pacing and Clinical Electrophysiology, 17(8), 1373-1379. doi:10.1111/j.1540-8159.1994.tb02456.x | es_ES |
dc.description.references | Coumel, P. (1994). Paroxysmal Atrial Fibrillation: A Disorder of Autonomic Tone? European Heart Journal, 15(suppl A), 9-16. doi:10.1093/eurheartj/15.suppl_a.9 | es_ES |
dc.description.references | Holm, M. (1999). Effect of cardiac exposure by median sternotomy on atrial fibrillation cycle length. Europace, 1(4), 248-257. doi:10.1053/eupc.1999.0054 | es_ES |
dc.description.references | Ingemansson, M. P., Holm, M., & Olsson, S. B. (1998). Autonomic modulation of the atrial cycle length by the head up tilt test: non-invasive evaluation in patients with chronic atrial fibrillation. Heart, 80(1), 71-76. doi:10.1136/hrt.80.1.71 | es_ES |
dc.description.references | Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic Features of Chronic Atrial Fibrillation. New England Journal of Medicine, 306(17), 1018-1022. doi:10.1056/nejm198204293061703 | es_ES |
dc.description.references | Kim, K.-B., Rodefeld, M. D., Schuessler, R. B., Cox, J. L., & Boineau, J. P. (1996). Relationship Between Local Atrial Fibrillation Interval and Refractory Period in the Isolated Canine Atrium. Circulation, 94(11), 2961-2967. doi:10.1161/01.cir.94.11.2961 | es_ES |
dc.description.references | Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 | es_ES |
dc.description.references | LOBAUGH, N. J., WEST, R., & McINTOSH, A. R. (2001). Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. Psychophysiology, 38(3), 517-530. doi:10.1017/s0048577201991681 | es_ES |
dc.description.references | Meurling, C. J., Waktare, J. E. P., Holmqvist, F., Hedman, A., Camm, A. J., Olsson, S. B., & Malik, M. (2001). Diurnal variations of the dominant cycle length of chronic atrial fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 280(1), H401-H406. doi:10.1152/ajpheart.2001.280.1.h401 | es_ES |
dc.description.references | Mitchell, A. R. J., Spurrell, P. A. R., & Sulke, N. (2003). Circadian variation of arrhythmia onset patterns in patients with persistent atrial fibrillation. American Heart Journal, 146(5), 902-907. doi:10.1016/s0002-8703(03)00405-8 | es_ES |
dc.description.references | Nagayoshi, H., Janota, T., Hnatkova, K., Camm, A. J., & Malik, M. (1997). Autonomic modulation of ventricular rate in atrial fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 272(4), H1643-H1649. doi:10.1152/ajpheart.1997.272.4.h1643 | es_ES |
dc.description.references | Napolitano, C. A., Raatikainen, P. M. J., Martens, J. R., & Dennis, D. M. (1996). Effects of Intravenous Anesthetics on Atrial Wavelength and Atrioventricular Nodal Conduction in Guinea Pig Heart. Anesthesiology, 85(2), 393-402. doi:10.1097/00000542-199608000-00022 | es_ES |
dc.description.references | Natale, A., Pisano, E., Shewchik, J., Bash, D., Fanelli, R., Potenza, D., … Lesh, M. (2000). First Human Experience With Pulmonary Vein Isolation Using a Through-the-Balloon Circumferential Ultrasound Ablation System for Recurrent Atrial Fibrillation. Circulation, 102(16), 1879-1882. doi:10.1161/01.cir.102.16.1879 | es_ES |
dc.description.references | NDREPEPA, G., CAREF, E. B., YIN, H., El-SHERIF, N., & RESTIVO, M. (1995). Activation Time Determination by High-Resolution Unipolar and Bipolar Extracellular Electrograms in the Canine Heart. Journal of Cardiovascular Electrophysiology, 6(3), 174-188. doi:10.1111/j.1540-8167.1995.tb00769.x | es_ES |
dc.description.references | Nguyen, D. V., & Rocke, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18(1), 39-50. doi:10.1093/bioinformatics/18.1.39 | es_ES |
dc.description.references | Nilsson, J., de Jong, S., & Smilde, A. K. (1997). Multiway calibration in 3D QSAR. Journal of Chemometrics, 11(6), 511-524. doi:10.1002/(sici)1099-128x(199711/12)11:6<511::aid-cem488>3.0.co;2-w | es_ES |
dc.description.references | Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., … Chierchia, S. (2000). Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia. Circulation, 102(21), 2619-2628. doi:10.1161/01.cir.102.21.2619 | es_ES |
dc.description.references | Richter, S., & Brugada, P. (2012). Propofol-induced coved-type electrocardiogram during catheter ablation of paroxysmal atrial fibrillation. Herzschrittmachertherapie + Elektrophysiologie, 23(1), 56-58. doi:10.1007/s00399-011-0156-8 | es_ES |
dc.description.references | Royster, R. L., Keeler, D. K., Haisty, W. K., Johnston, W. E., & Prough, D. S. (1988). Cardiac Electrophysiologic Effects of Fentanyl and Combinations of Fentanyl and Neuromuscular Relaxants in Pentobarbital???Anesthetized Dogs. Anesthesia & Analgesia, 67(1), 15???20. doi:10.1213/00000539-198801000-00003 | es_ES |
dc.description.references | Saint, D. A. (1998). The effects of propofol on macroscopic and single channel sodium currents in rat ventricular myocytes. British Journal of Pharmacology, 124(4), 655-662. doi:10.1038/sj.bjp.0701876 | es_ES |
dc.description.references | Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 | es_ES |
dc.description.references | Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 | es_ES |
dc.description.references | Smeets, J. L., Allessie, M. A., Lammers, W. J., Bonke, F. I., & Hollen, J. (1986). The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circulation Research, 58(1), 96-108. doi:10.1161/01.res.58.1.96 | es_ES |
dc.description.references | Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901 | es_ES |
dc.description.references | Worsley, K. J. (1997). An overview and some new developments in the statistical analysis of PET and fMRI data. Human Brain Mapping, 5(4), 254-258. doi:10.1002/(sici)1097-0193(1997)5:4<254::aid-hbm9>3.0.co;2-2 | es_ES |
dc.description.references | Yip, A. S. B., McGuire, M. A., Davis, L., Ho, D. S. W., Richards, D. A. B., Uther, J. B., & Ross, D. L. (1992). Lack off effect of midazolam on inducibility of arrhythmias at electrophysiologic study. The American Journal of Cardiology, 70(6), 593-597. doi:10.1016/0002-9149(92)90197-7 | es_ES |
dc.description.references | Zaballos, M., Almendral, J., Anadón, M. J., González, P., & Navia, J. (2004). Comparative effects of thiopental and propofol on atrial vulnerability: electrophysiological study in a porcine model including acute alcoholic intoxication †. British Journal of Anaesthesia, 93(3), 414-421. doi:10.1093/bja/aeh215 | es_ES |