- -

Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cervigón Abad, Raquel es_ES
dc.contributor.author Moreno, J. es_ES
dc.contributor.author Reilly, Richard es_ES
dc.contributor.author Perez-Villacastin, J. es_ES
dc.contributor.author Castells Ramón, Francisco Sales es_ES
dc.date.accessioned 2014-12-12T14:37:17Z
dc.date.available 2014-12-12T14:37:17Z
dc.date.issued 2012-10
dc.identifier.issn 0967-3334
dc.identifier.uri http://hdl.handle.net/10251/45409
dc.description.abstract The mechanism underlying atrial fibrillation (AF) remains poorly understood. Multiple wandering propagation wavelets drifting through both atria under hierarchical models are not understood. Some pharmacological drugs, known as antiarrhythmics, modify the cardiac ionic currents supporting the fibrillation process within the atria and may modify the AF propagation dynamics terminating the fibrillation process. Other medications, theoretically non-antiarrhythmic, may slightly affect the fibrillation process in non-defined mechanisms. We evaluated whether the most commonly used anaesthetic agent, propofol, affects AF patterns. Partial least-squares (PLS) analysis was performed to reduce significant noise into the main latent variables to find the differences between groups. The final results showed an excellent discrimination between groups with slow atrial activity during the propofol infusion. © 2012 Institute of Physics and Engineering in Medicine. © 2012 Institute of Physics and Engineering in Medicine. es_ES
dc.description.sponsorship This work was supported by the Ministry of Education and Science of Spain. (Ref: EASI TEC2009-13939). en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anaesthetic es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Partial least-squares (PLS) es_ES
dc.subject Principal component analysis (PCA) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/33/10/1757
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-13939/ES/Desarrollo De Tecnicas Avanzadas De Analisis Y Caracterizacion De Mapas De Propagacion Para La Ayuda Al Diagnostico Electrocardiografico./ / es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Cervigón Abad, R.; Moreno, J.; Reilly, R.; Perez-Villacastin, J.; Castells Ramón, FS. (2012). Quantification of anaesthetic effects on atrial fibrillation rate by partial least-squares. Physiological Measurement. 33(10):1757-1768. doi:10.1088/0967-3334/33/10/1757 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0967-3334/33/10/1757 es_ES
dc.description.upvformatpinicio 1757 es_ES
dc.description.upvformatpfin 1768 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 238105
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Akselrod, S., Gordon, D., Ubel, F., Shannon, D., Berger, A., & Cohen, R. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 213(4504), 220-222. doi:10.1126/science.6166045 es_ES
dc.description.references BOLLMANN, A., SONNE, K., ESPERER, H.-D., TOEPFFER, I., & KLEIN, H. U. (2000). Circadian Variations in Atrial Fibrillatory Frequency in Persistent Human Atrial Fibrillation. Pacing and Clinical Electrophysiology, 23(11P2), 1867-1871. doi:10.1111/j.1540-8159.2000.tb07040.x es_ES
dc.description.references Botteron, G. W., & Smith, J. M. (1995). A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Transactions on Biomedical Engineering, 42(6), 579-586. doi:10.1109/10.387197 es_ES
dc.description.references Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193 es_ES
dc.description.references Cervigón, R., Moreno, J., Castells, F., Mateo, J., Sánchez, C., Pérez-Villacastín, J., & Millet, J. (2008). Anesthesia with propofol slows atrial fibrillation dominant frequencies. Computers in Biology and Medicine, 38(7), 792-798. doi:10.1016/j.compbiomed.2008.04.007 es_ES
dc.description.references Cervigón, R., Moreno, J., Millet, J., Pérez-Villacastín, J., & Castells, F. (2010). Propofol Effects on Atrial Fibrillation Wavefront Delays. IEEE Transactions on Biomedical Engineering, 57(8), 1877-1885. doi:10.1109/tbme.2009.2037312 es_ES
dc.description.references CHIANG, C.-M. J., JENKINS, J. M., & DiCARLO, L. A. (1994). Digital Signal Processing Chip Implementation for Detection and Analysis of Intracardiac Electrograms. Pacing and Clinical Electrophysiology, 17(8), 1373-1379. doi:10.1111/j.1540-8159.1994.tb02456.x es_ES
dc.description.references Coumel, P. (1994). Paroxysmal Atrial Fibrillation: A Disorder of Autonomic Tone? European Heart Journal, 15(suppl A), 9-16. doi:10.1093/eurheartj/15.suppl_a.9 es_ES
dc.description.references Holm, M. (1999). Effect of cardiac exposure by median sternotomy on atrial fibrillation cycle length. Europace, 1(4), 248-257. doi:10.1053/eupc.1999.0054 es_ES
dc.description.references Ingemansson, M. P., Holm, M., & Olsson, S. B. (1998). Autonomic modulation of the atrial cycle length by the head up tilt test: non-invasive evaluation in patients with chronic atrial fibrillation. Heart, 80(1), 71-76. doi:10.1136/hrt.80.1.71 es_ES
dc.description.references Kannel, W. B., Abbott, R. D., Savage, D. D., & McNamara, P. M. (1982). Epidemiologic Features of Chronic Atrial Fibrillation. New England Journal of Medicine, 306(17), 1018-1022. doi:10.1056/nejm198204293061703 es_ES
dc.description.references Kim, K.-B., Rodefeld, M. D., Schuessler, R. B., Cox, J. L., & Boineau, J. P. (1996). Relationship Between Local Atrial Fibrillation Interval and Refractory Period in the Isolated Canine Atrium. Circulation, 94(11), 2961-2967. doi:10.1161/01.cir.94.11.2961 es_ES
dc.description.references Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665 es_ES
dc.description.references LOBAUGH, N. J., WEST, R., & McINTOSH, A. R. (2001). Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares. Psychophysiology, 38(3), 517-530. doi:10.1017/s0048577201991681 es_ES
dc.description.references Meurling, C. J., Waktare, J. E. P., Holmqvist, F., Hedman, A., Camm, A. J., Olsson, S. B., & Malik, M. (2001). Diurnal variations of the dominant cycle length of chronic atrial fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 280(1), H401-H406. doi:10.1152/ajpheart.2001.280.1.h401 es_ES
dc.description.references Mitchell, A. R. J., Spurrell, P. A. R., & Sulke, N. (2003). Circadian variation of arrhythmia onset patterns in patients with persistent atrial fibrillation. American Heart Journal, 146(5), 902-907. doi:10.1016/s0002-8703(03)00405-8 es_ES
dc.description.references Nagayoshi, H., Janota, T., Hnatkova, K., Camm, A. J., & Malik, M. (1997). Autonomic modulation of ventricular rate in atrial fibrillation. American Journal of Physiology-Heart and Circulatory Physiology, 272(4), H1643-H1649. doi:10.1152/ajpheart.1997.272.4.h1643 es_ES
dc.description.references Napolitano, C. A., Raatikainen, P. M. J., Martens, J. R., & Dennis, D. M. (1996). Effects of Intravenous Anesthetics on Atrial Wavelength and Atrioventricular Nodal Conduction in Guinea Pig Heart. Anesthesiology, 85(2), 393-402. doi:10.1097/00000542-199608000-00022 es_ES
dc.description.references Natale, A., Pisano, E., Shewchik, J., Bash, D., Fanelli, R., Potenza, D., … Lesh, M. (2000). First Human Experience With Pulmonary Vein Isolation Using a Through-the-Balloon Circumferential Ultrasound Ablation System for Recurrent Atrial Fibrillation. Circulation, 102(16), 1879-1882. doi:10.1161/01.cir.102.16.1879 es_ES
dc.description.references NDREPEPA, G., CAREF, E. B., YIN, H., El-SHERIF, N., & RESTIVO, M. (1995). Activation Time Determination by High-Resolution Unipolar and Bipolar Extracellular Electrograms in the Canine Heart. Journal of Cardiovascular Electrophysiology, 6(3), 174-188. doi:10.1111/j.1540-8167.1995.tb00769.x es_ES
dc.description.references Nguyen, D. V., & Rocke, D. M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics, 18(1), 39-50. doi:10.1093/bioinformatics/18.1.39 es_ES
dc.description.references Nilsson, J., de Jong, S., & Smilde, A. K. (1997). Multiway calibration in 3D QSAR. Journal of Chemometrics, 11(6), 511-524. doi:10.1002/(sici)1099-128x(199711/12)11:6<511::aid-cem488>3.0.co;2-w es_ES
dc.description.references Pappone, C., Rosanio, S., Oreto, G., Tocchi, M., Gugliotta, F., Vicedomini, G., … Chierchia, S. (2000). Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia. Circulation, 102(21), 2619-2628. doi:10.1161/01.cir.102.21.2619 es_ES
dc.description.references Richter, S., & Brugada, P. (2012). Propofol-induced coved-type electrocardiogram during catheter ablation of paroxysmal atrial fibrillation. Herzschrittmachertherapie + Elektrophysiologie, 23(1), 56-58. doi:10.1007/s00399-011-0156-8 es_ES
dc.description.references Royster, R. L., Keeler, D. K., Haisty, W. K., Johnston, W. E., & Prough, D. S. (1988). Cardiac Electrophysiologic Effects of Fentanyl and Combinations of Fentanyl and Neuromuscular Relaxants in Pentobarbital???Anesthetized Dogs. Anesthesia & Analgesia, 67(1), 15???20. doi:10.1213/00000539-198801000-00003 es_ES
dc.description.references Saint, D. A. (1998). The effects of propofol on macroscopic and single channel sodium currents in rat ventricular myocytes. British Journal of Pharmacology, 124(4), 655-662. doi:10.1038/sj.bjp.0701876 es_ES
dc.description.references Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011 es_ES
dc.description.references Skanes, A. C., Mandapati, R., Berenfeld, O., Davidenko, J. M., & Jalife, J. (1998). Spatiotemporal Periodicity During Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 98(12), 1236-1248. doi:10.1161/01.cir.98.12.1236 es_ES
dc.description.references Smeets, J. L., Allessie, M. A., Lammers, W. J., Bonke, F. I., & Hollen, J. (1986). The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circulation Research, 58(1), 96-108. doi:10.1161/01.res.58.1.96 es_ES
dc.description.references Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901 es_ES
dc.description.references Worsley, K. J. (1997). An overview and some new developments in the statistical analysis of PET and fMRI data. Human Brain Mapping, 5(4), 254-258. doi:10.1002/(sici)1097-0193(1997)5:4<254::aid-hbm9>3.0.co;2-2 es_ES
dc.description.references Yip, A. S. B., McGuire, M. A., Davis, L., Ho, D. S. W., Richards, D. A. B., Uther, J. B., & Ross, D. L. (1992). Lack off effect of midazolam on inducibility of arrhythmias at electrophysiologic study. The American Journal of Cardiology, 70(6), 593-597. doi:10.1016/0002-9149(92)90197-7 es_ES
dc.description.references Zaballos, M., Almendral, J., Anadón, M. J., González, P., & Navia, J. (2004). Comparative effects of thiopental and propofol on atrial vulnerability: electrophysiological study in a porcine model including acute alcoholic intoxication †. British Journal of Anaesthesia, 93(3), 414-421. doi:10.1093/bja/aeh215 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem