Mostrar el registro sencillo del ítem
dc.contributor.author | Castells Ramón, Francisco Sales | es_ES |
dc.contributor.author | Cervigón Abad, Raquel | es_ES |
dc.contributor.author | Millet Roig, José | es_ES |
dc.date.accessioned | 2014-12-17T18:18:37Z | |
dc.date.available | 2014-12-17T18:18:37Z | |
dc.date.issued | 2014-02 | |
dc.identifier.issn | 0147-8389 | |
dc.identifier.uri | http://hdl.handle.net/10251/45560 | |
dc.description.abstract | BackgroundThe dominant atrial frequency is a key parameter for the analysis of atrial fibrillation (AF) from intracardiac recordings. The preprocessing approach employed by Botteron et al. in an early work is able to retrieve this frequency. The preprocessing steps are: (1) 40-250-Hz band-pass filtering, (2) rectification, and (3) 20 Hz low-pass filtering. Methods and resultsThe theoretical aspects of this process are addressed. Moreover, its time-domain and frequency-domain properties are evaluated using both simulations and real electrogram (EGM) recordings. The fundamental frequency is emphasized, due to the rectification step. As the interval between consecutive activations becomes more irregular, fundamental frequency detection becomes less robust. In the case of fractionated EGM, this approach fails. In time-domain, the waveform of the atrial beats are dramatically modified, hence hindering any further analysis on the morphology of the activations. ConclusionsBotteron preprocessing succeeds in estimating the dominant atrial rate in most EGMs during AF. However, this approach presents some limitations and improved methods are required. | es_ES |
dc.description.sponsorship | This work received financial support from Prometeo Research Project, from Generalitat Valenciana, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | Pacing and Clinical Electrophysiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Biomedical engineering | es_ES |
dc.subject | Data analysis | es_ES |
dc.subject | Clinical electrophysiology | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | On the Preprocessing of Atrial Electrograms in Atrial Fibrillation: Understanding Botteron's Approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/pace.12288 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Castells Ramón, FS.; Cervigón Abad, R.; Millet Roig, J. (2014). On the Preprocessing of Atrial Electrograms in Atrial Fibrillation: Understanding Botteron's Approach. Pacing and Clinical Electrophysiology. 37(2):133-143. doi:10.1111/pace.12288 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/pace.12288 | es_ES |
dc.description.upvformatpinicio | 133 | es_ES |
dc.description.upvformatpfin | 143 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 37 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 252587 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Haïssaguerre, M., Sanders, P., Hocini, M., Hsu, L.-F., Shah, D. C., Scavée, C., … Jaïs, P. (2004). Changes in Atrial Fibrillation Cycle Length and Inducibility During Catheter Ablation and Their Relation to Outcome. Circulation, 109(24), 3007-3013. doi:10.1161/01.cir.0000130645.95357.97 | es_ES |
dc.description.references | Holm, M. (1998). Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research, 38(1), 69-81. doi:10.1016/s0008-6363(97)00289-7 | es_ES |
dc.description.references | Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2001). Characterization of atrial fibrillation using the surface ECG: time-dependent spectral properties. IEEE Transactions on Biomedical Engineering, 48(1), 19-27. doi:10.1109/10.900245 | es_ES |
dc.description.references | Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113 | es_ES |
dc.description.references | JAIS, P., HAISSAGUERRE, M., SHAH, D. C., CHOUAIRI, S., & CLEMENTY, J. (1996). Regional Disparities of Endocardial Atrial Activation in Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 19(11), 1998-2003. doi:10.1111/j.1540-8159.1996.tb03269.x | es_ES |
dc.description.references | Takahashi, Y., O’Neill, M. D., Hocini, M., Dubois, R., Matsuo, S., Knecht, S., … Haïssaguerre, M. (2008). Characterization of Electrograms Associated With Termination of Chronic Atrial Fibrillation by Catheter Ablation. Journal of the American College of Cardiology, 51(10), 1003-1010. doi:10.1016/j.jacc.2007.10.056 | es_ES |
dc.description.references | Houben, R. P. M., de Groot, N. M. S., & Allessie, M. A. (2010). Analysis of Fractionated Atrial Fibrillation Electrograms by Wavelet Decomposition. IEEE Transactions on Biomedical Engineering, 57(6), 1388-1398. doi:10.1109/tbme.2009.2037974 | es_ES |
dc.description.references | Weber, F. M., Schilling, C., Seemann, G., Luik, A., Schmitt, C., Lorenz, C., & Dössel, O. (2010). Wave-Direction and Conduction-Velocity Analysis From Intracardiac Electrograms–A Single-Shot Technique. IEEE Transactions on Biomedical Engineering, 57(10), 2394-2401. doi:10.1109/tbme.2010.2055056 | es_ES |
dc.description.references | Botteron, G. W., & Smith, J. M. (1995). A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Transactions on Biomedical Engineering, 42(6), 579-586. doi:10.1109/10.387197 | es_ES |
dc.description.references | Houben, R. P. M., & Allessie, M. A. (2006). Processing of intracardiac electrograms in atrial fibrillation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 40-51. doi:10.1109/emb-m.2006.250507 | es_ES |
dc.description.references | Nollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/tbme.2008.923155 | es_ES |
dc.description.references | Cervigón, R., Moreno, J., Millet, J., Pérez-Villacastín, J., & Castells, F. (2010). Propofol Effects on Atrial Fibrillation Wavefront Delays. IEEE Transactions on Biomedical Engineering, 57(8), 1877-1885. doi:10.1109/tbme.2009.2037312 | es_ES |
dc.description.references | Richter, U., Faes, L., Cristoforetti, A., Masè, M., Ravelli, F., Stridh, M., & Sörnmo, L. (2010). A Novel Approach to Propagation Pattern Analysis in Intracardiac Atrial Fibrillation Signals. Annals of Biomedical Engineering, 39(1), 310-323. doi:10.1007/s10439-010-0146-8 | es_ES |
dc.description.references | Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586 | es_ES |
dc.description.references | Barquero-Pérez, Ó., Rojo-Álvarez, J. L., Caamaño, A. J., Goya-Esteban, R., Everss, E., Alonso-Atienza, F., … García-Alberola, A. (2010). Fundamental Frequency and Regularity of Cardiac Electrograms With Fourier Organization Analysis. IEEE Transactions on Biomedical Engineering, 57(9), 2168-2177. doi:10.1109/tbme.2010.2049574 | es_ES |
dc.description.references | MATSUO, S., YAMANE, T., DATE, T., TOKUTAKE, K.-I., HIOKI, M., ITO, K., … YOSHIMURA, M. (2011). Real-Time Dominant Frequency Analysis of the Pulmonary Vein in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 35(1), 28-37. doi:10.1111/j.1540-8159.2011.03259.x | es_ES |
dc.description.references | Nademanee, K., McKenzie, J., Kosar, E., Schwab, M., Sunsaneewitayakul, B., Vasavakul, T., … Ngarmukos, T. (2004). A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. Journal of the American College of Cardiology, 43(11), 2044-2053. doi:10.1016/j.jacc.2003.12.054 | es_ES |
dc.description.references | Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510 | es_ES |
dc.description.references | Botteron, G. W., & Smith, J. M. (1996). Quantitative Assessment of the Spatial Organization of Atrial Fibrillation in the Intact Human Heart. Circulation, 93(3), 513-518. doi:10.1161/01.cir.93.3.513 | es_ES |
dc.description.references | Lazar, S., Dixit, S., Marchlinski, F. E., Callans, D. J., & Gerstenfeld, E. P. (2004). Presence of Left-to-Right Atrial Frequency Gradient in Paroxysmal but Not Persistent Atrial Fibrillation in Humans. Circulation, 110(20), 3181-3186. doi:10.1161/01.cir.0000147279.91094.5e | es_ES |
dc.description.references | Bollmann, A., Kanuru, N., McTeague, K., Walter, P., DeLurgio, D., & Langberg, J. (1998). Frequency Analysis of Human Atrial Fibrillation Using the Surface Electrocardiogram and Its Response to Ibutilide. The American Journal of Cardiology, 81(12), 1439-1445. doi:10.1016/s0002-9149(98)00210-0 | es_ES |
dc.description.references | Everett, T. H., Moorman, J. R., Kok, L.-C., Akar, J. G., & Haines, D. E. (2001). Assessment of Global Atrial Fibrillation Organization to Optimize Timing of Atrial Defibrillation. Circulation, 103(23), 2857-2861. doi:10.1161/01.cir.103.23.2857 | es_ES |
dc.description.references | TAKAHASHI, Y., SANDERS, P., JAIS, P., HOCINI, M., DUBOIS, R., ROTTER, M., … HAISSAGUERRE, M. (2006). Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation. Journal of Cardiovascular Electrophysiology, 17(4), 382-388. doi:10.1111/j.1540-8167.2005.00414.x | es_ES |
dc.description.references | NG, J., PASSMAN, R. S., ARORA, R., KADISH, A. H., & GOLDBERGER, J. J. (2012). Paradoxical Change in Atrial Fibrillation Dominant Frequencies with Baroreflex-Mediated Parasympathetic Stimulation with Phenylephrine Infusion. Journal of Cardiovascular Electrophysiology, 23(10), 1045-1050. doi:10.1111/j.1540-8167.2012.02362.x | es_ES |
dc.description.references | ISI Web of Knowledge http://www.webofknowledge.com | es_ES |
dc.description.references | Ng, J., Kadish, A. H., & Goldberger, J. J. (2006). Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm, 3(11), 1295-1305. doi:10.1016/j.hrthm.2006.07.027 | es_ES |
dc.description.references | NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x | es_ES |
dc.description.references | NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.x | es_ES |
dc.description.references | Fischer, G., Stuhlinger, M. C., Nowak, C.-N., Wieser, L., Tilg, B., & Hintringer, F. (2007). On Computing Dominant Frequency From Bipolar Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 54(1), 165-169. doi:10.1109/tbme.2006.883739 | es_ES |
dc.description.references | Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. doi:10.1109/tau.1967.1161901 | es_ES |
dc.description.references | Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215 | es_ES |
dc.description.references | CIACCIO, E. J., BIVIANO, A. B., WHANG, W., WIT, A. L., COROMILAS, J., & GARAN, H. (2010). Optimized Measurement of Activation Rate at Left Atrial Sites with Complex Fractionated Electrograms During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 21(2), 133-143. doi:10.1111/j.1540-8167.2009.01595.x | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., Vest, J. A., Gambhir, A., Einstein, A. J., & Garan, H. (2011). Differences in Repeating Patterns of Complex Fractionated Left Atrial Electrograms in Longstanding Persistent Atrial Fibrillation as Compared With Paroxysmal Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4(4), 470-477. doi:10.1161/circep.110.960153 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., Gambhir, A., & Garan, H. (2010). Different characteristics of complex fractionated atrial electrograms in acute paroxysmal versus long-standing persistent atrial fibrillation. Heart Rhythm, 7(9), 1207-1215. doi:10.1016/j.hrthm.2010.06.018 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., & Garan, H. (2012). A new LMS algorithm for analysis of atrial fibrillation signals. BioMedical Engineering OnLine, 11(1), 15. doi:10.1186/1475-925x-11-15 | es_ES |
dc.description.references | Ciaccio, E. J., Biviano, A. B., Whang, W., & Garan, H. (2012). Improved frequency resolution for characterization of complex fractionated atrial electrograms. BioMedical Engineering OnLine, 11(1), 17. doi:10.1186/1475-925x-11-17 | es_ES |
dc.description.references | Treo, E. F., Cervantes, D. O., & Ciaccio, E. J. (2013). Automated detection and mapping of electrical activation when electrogram morphology is complex. Biomedical Signal Processing and Control, 8(1), 41-49. doi:10.1016/j.bspc.2012.04.006 | es_ES |