- -

Mid term variation of vertical distribution of Acid Volatile Sulphide and Simultaneously Extracted Metals in sediment cores from Lake Albufera (Valencia, Spain)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mid term variation of vertical distribution of Acid Volatile Sulphide and Simultaneously Extracted Metals in sediment cores from Lake Albufera (Valencia, Spain)

Show simple item record

Files in this item

dc.contributor.author Hernández Crespo, Carmen es_ES
dc.contributor.author Martín Monerris, Miguel es_ES
dc.date.accessioned 2015-01-09T10:06:18Z
dc.date.available 2015-01-09T10:06:18Z
dc.date.issued 2013-11
dc.identifier.issn 0090-4341
dc.identifier.uri http://hdl.handle.net/10251/45913
dc.description.abstract Lake Albufera is one of the most eutrophic bodies of water in Spain due to the point and diffuse pollution over past decades and its sediments are likely to be anoxic because of the high organic matter flux. Hence, sulphides can play an important role in limiting the mobility of heavy metals. This work aimed to study the vertical variation of acid volatile sulphide (AVS) and simultaneously extracted metals (SEM) in sediment cores collected from Lake Albufera; other sediment characteristics like organic matter, biochemical oxygen demand or total metals were also studied. Three sites were selected and four sampling campaigns were carried out in order to study the spatial and temporal variation, as well as to obtain information regarding the historical variation in the composition of sediments. AVS and SEM were analysed by the purge and trap method. The vertical distribution of AVS and SEM varied depending on the sampling site, concentrations of AVS and SEM were higher at sites close to mouths of inflowing channels. A decreasing trend of AVS has been found at these sites over time: in the two first samplings, AVS increased with depth reaching maximum concentrations of 40 and 21 µmol g-1, but from then on, AVS were lower and decreased with depth. SEM decreased with depth from 3 µmol g-1 in surface layers to around 1 µmol g-1 at deeper segments at these sites. However, the central site was more uniform with depth as well as with time, presenting lower values of SEM and AVS (mean of 0.9 and 2.0 µmol g-1 respectively); there the maximum value of AVS (7 µmol g-1) was found at the top layer (0-3 cm). According to the (SEM-AVS)/fOC approach every sites, and throughout the whole cores, can be classified as non-toxic respect metals, as the values were under 130 µmol g-1. es_ES
dc.description.sponsorship We thank three anonymous reviewers for their comments and suggestions to improve the quality of the manuscript. This study was funded by the support programme for research and development, first research projects (Grant No. PAID-06-08-3155) at the Universitat Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Universitat Politecnica de Valencia PAID-06-08-3155 es_ES
dc.relation.ispartof Archives of Environmental Contamination and Toxicology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AVS es_ES
dc.subject SEM es_ES
dc.subject Profile es_ES
dc.subject Sediments es_ES
dc.subject Albufera es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Mid term variation of vertical distribution of Acid Volatile Sulphide and Simultaneously Extracted Metals in sediment cores from Lake Albufera (Valencia, Spain) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00244-013-9941-1
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Hernández Crespo, C.; Martín Monerris, M. (2013). Mid term variation of vertical distribution of Acid Volatile Sulphide and Simultaneously Extracted Metals in sediment cores from Lake Albufera (Valencia, Spain). Archives of Environmental Contamination and Toxicology. 65(4):654-664. doi:10.1007/s00244-013-9941-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00244-013-9941-1 es_ES
dc.description.upvformatpinicio 654 es_ES
dc.description.upvformatpfin 664 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 254575
dc.relation.references Allen HE, Fu G, Deng B (1993) Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453 es_ES
dc.relation.references Andreu V, Gimeno-García E (1999) Evolution of heavy metals in marsh areas Ander rice farming. Environ Pollut 104:271–282 es_ES
dc.relation.references Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon—an overview of current methods. Trends Anal Chem 23:716–726 es_ES
dc.relation.references Campana O, Rodríguez A, Blasco J (2009) Identification of a potential toxic hot spot associated with AVS spatial and seasonal variation. Arch Environ Contam Toxicol 56:416–425 es_ES
dc.relation.references Campana O, Simpson SL, Spadaro DA, Blasco J (2012) Sub-lethal effects of copper to benthic invertebrates explained by sediment properties and dietary exposure. Environ Sci Technol 46:6835–6842 es_ES
dc.relation.references Casado-Martínez MC, Buceta JL, Belzunce MJ, Del Valls TA (2006) Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environ Int 32:388–396 es_ES
dc.relation.references Charriau A, Lesven L, Gao Y, Leermakers M, Baeyens W, Ouddane B et al (2011) Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Appl Geochem 26:80–90 es_ES
dc.relation.references Choi JH, Park SS, Jaffé PR (2006) Simulating the dynamics of sulphur species and zinc in wetland sediments. Ecol Model 199:315–333 es_ES
dc.relation.references De Jonge M, Blust R, Bervoets L (2010) The relation between acid volatile sulfide (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behaviour and ecology. Environ Pollut 158:1381–1391 es_ES
dc.relation.references De Jonge M, Eyckmans M, Blust R, Bervoets L (2011) Are accumulated sulfide-bound metals metabolically available in the benthic oligochaete Tubifex tubifex? Environ Sci Technol 45:3131–3137 es_ES
dc.relation.references De Jonge M, Teuchies J, Meire O, Blust R, Bervoets (2012) The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46:2205–2214 es_ES
dc.relation.references Di Toro DM (2001) Sediment flux modeling. Wiley Intersciences Series, New York es_ES
dc.relation.references Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR, Ankley GT (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101 es_ES
dc.relation.references Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985 es_ES
dc.relation.references European Community (2010) Common implementation strategy for the Water Framework Directive (2000/60/EC). Guidance document No. 25. Guidance on chemical monitoring of sediment and biota under the Water Framework Directive. Office for Official Publications of the European Communities Luxemburg es_ES
dc.relation.references Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25 es_ES
dc.relation.references Hernández-Crespo C, Martín M, Ferrís M, Oñate M (2012) Measurement of acid volatile sulphide and simultaneously extracted metals in sediment from Lake Albufera (Valencia, Spain). Soil Sed Contam 21:176–191 es_ES
dc.relation.references Huang P, Liu Z (2009) The effect of wave-reduction engineering on sediment resuspension in a large, shallow, eutrophic lake (Lake Taihu). Ecol Engineer 35:1619–1623 es_ES
dc.relation.references Konen ME, Jacobs PM, Burras CL, Talaga BJ, Mason JA (2002) Equations for predicting soil organic carbon using loss-on-ignition for North Central U.S. Soils Soil Sci Soc Am J 66:1878–1881 es_ES
dc.relation.references Liu J, Yan C, Macnair MR, Hu J, Li Y (2007) Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in mangrove sediments from Jiulong River Estuary, Fujian, China. Environ Sci Pollut Res 14:345–349 es_ES
dc.relation.references MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater sediments. Arch Environ Contam Toxicol 39:20–31 es_ES
dc.relation.references Martín M, Oliver N, Hernández-Crespo C, Gargallo S, Regidor MC (2013) The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecol Eng 50:52–61 es_ES
dc.relation.references Otero XL, Macías F (2002) Variation with depth and season in metal sulfides in salt marsh soils. Biogechemistry 61:247–268 es_ES
dc.relation.references Peris E, Monzó J, Payá J, Borrachero MV (2000) Characterization of lagoon sediments and their pollutant charge—proposals for reusing. Waste Manag Ser 1:1014–1021 es_ES
dc.relation.references Plumb RH (1981) Procedures for handling and chemical analysis of sediment and water samples. USEPA-480557210. Corps of Engineers Technical Committee on criteria for dredged and fill material es_ES
dc.relation.references Reddy KR, De Laune RD (2008) Biogeochemistry of wetlands: Science and applications. CRC Press es_ES
dc.relation.references Rodrigo MA, Alonso-Guillén JL, Soulié-Märsche I (2010) Reconstruction of the former charophyte community out of the fructifications indentified in Albufera de València lagoon sediments. Aquat Bot 92:14–22 es_ES
dc.relation.references Técnica y Proyectos S.A. (TYPSA) (2004) Estudio para el desarrollo sostenible de l’ Albufera de Valencia. Confederación Hidrográfica del Júcar. Ministerio de Medio Ambiente. http://www2.chj.gob.es/albufera/index.html . Accessed 18 July 2013 es_ES
dc.relation.references UNE 77322:2003 – Calidad del suelo. Extracción de elementos traza solubles en agua regia (ISO 11466:1995) es_ES
dc.relation.references UNE-EN 872 (2006) Water quality. Determination of suspended solids. Method by filtration through glass fibre filters es_ES
dc.relation.references United States Environmental Protection Agency (1991) Draft analytical method for the determination of acid volatile sulfide in sediment. EPA 821/R-91-100. Office of Water Regulations and Standards, Washington, DC es_ES
dc.relation.references United States Environmental Protection Agency (2005) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver and zinc). EPA-600-R-02-011. Office of Research and Development, Washington, DC es_ES
dc.relation.references Van den Berg G, Buykx SEJ, Van den Hoop MAGT, Van der Heijdt LM, Zwolsman JJG (2001) Vertical profiles of trace metals and acid-volatile sulphide in a dynamic sedimentary environment: Lake Ketel, The Netherlands. App Geochem 16:781–791 es_ES
dc.relation.references Wijsman JW, Herman PMJ, Middelburg JJ, Soetaert K (2002) A model for early diagenetic processes in sediments of the continental shelf of the Black Sea. Estuar Coast Shelf Sci 54:403–421 es_ES
dc.relation.references Yin H, Fan C (2011) Dynamics of reactive sulphide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Arch Environ Contam Toxicol 60:575–656 es_ES
dc.relation.references Yu KC, Tsai LJ, Ghen SH, Ho ST (2001) Chemical binding of heavy metals in anoxic river sediments. Water Res 35:4086–4094 es_ES


This item appears in the following Collection(s)

Show simple item record