- -

Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

Show full item record

Palomino Roca, M.; Corma Canós, A.; Jorda Moret, JL.; Rey Garcia, F.; Valencia Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chemical Communications. 48(2):215-217. doi:10.1039/C1CC16320E

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45946

Files in this item

Item Metadata

Title: Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Zeolite Rho is able to successfully separate CO2 from CH4 with the highest selectivity ever observed on the basis of pore diameter and surface polarity. The adsorption of CO2 provokes structural changes in the zeolite Rho.[+]
Subjects: All-Silica-DD3R , Carbon dioxide , Adsorptiun equilibrium , Imidazolate frameworks , High-Pressores , Mordenite , Methane , Parafins , Membrane , Nitrogen
Copyrigths: Reserva de todos los derechos
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/C1CC16320E
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c1cc16320e
Thanks:
We acknowledge financial support from Spanish CICYT (MAT2009-14528-C02-01, CTQ2010-17988/PPQ) and European Project TopCombi (NMP2-CT2005-515792). M.P. thanks CSIC for a JAE doctoral fellowship. The authors thank the referee ...[+]
Type: Artículo

References

Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

R. T. Yang , Adsorbents: Fundamentals and Applications, John Wiley and Sons, Hoboken, New Jersey, 2003, p. 157 [+]
Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

R. T. Yang , Adsorbents: Fundamentals and Applications, John Wiley and Sons, Hoboken, New Jersey, 2003, p. 157

S. Sircar and A. L.Myers, Gas separation by zeolites, in Handbook of Zeolite Science and Technology, ed. S. M. Auerbach, K. A. Carrado and P. K. Dutta, 2003, p. 1063

R. M. Barrer , Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025

Zhu, W., Kapteijn, F., & Moulijn, J. A. (1999). Shape selectivity in the adsorption of propane/propene on the all-silica DD3R. Chemical Communications, (24), 2453-2454. doi:10.1039/a906465f

Palomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358g

Tijsebaert, B., Varszegi, C., Gies, H., Xiao, F.-S., Bao, X., Tatsumi, T., … De Vos, D. (2008). Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chemical Communications, (21), 2480. doi:10.1039/b719463c

Olson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216d

Denayer, J. F., Souverijns, W., Jacobs, P. A., Martens, J. A., & Baron, G. V. (1998). High-Temperature Low-Pressure Adsorption of Branched C5−C8Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. The Journal of Physical Chemistry B, 102(23), 4588-4597. doi:10.1021/jp980674k

Amrouche, H., Aguado, S., Pérez-Pellitero, J., Chizallet, C., Siperstein, F., Farrusseng, D., … Nieto-Draghi, C. (2011). Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO2Separation. The Journal of Physical Chemistry C, 115(33), 16425-16432. doi:10.1021/jp202804g

Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207-211. doi:10.1038/nature06900

Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644b

Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010

P. A. Barrett and N. A.Stephenson, in Zeolites and Ordered Porous Solids: Fundamentals and Applications, ed. C. Martínez and J. Pérez-Pariente, Editorial Universitat Politècnica de València, Valencia, 2011, p. 149

Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials, 9(1), 013007. doi:10.1088/1468-6996/9/1/013007

Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496r

Delgado, J. A., Uguina, M. A., Gómez, J. M., & Ortega, L. (2006). Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Separation and Purification Technology, 48(3), 223-228. doi:10.1016/j.seppur.2005.07.027

Vansant, E. F., & Voets, R. (1981). Adsorption of binary gas mixtures in ion-exchanged forms of mordenite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(6), 1371. doi:10.1039/f19817701371

Llewellyn, P. L., & Maurin, G. (2007). Gas Adsorption in Zeolites and Related Materials. Introduction to Zeolite Science and Practice, 555-XVI. doi:10.1016/s0167-2991(07)80805-6

Venna, S. R., & Carreon, M. A. (2008). Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. The Journal of Physical Chemistry B, 112(51), 16261-16265. doi:10.1021/jp809316s

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Moon, J.-H., Bae, Y.-S., Hyun, S.-H., & Lee, C.-H. (2006). Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/α-alumina composite membrane. Journal of Membrane Science, 285(1-2), 343-352. doi:10.1016/j.memsci.2006.09.003

ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009

Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-x

Himeno, S., Tomita, T., Suzuki, K., & Yoshida, S. (2007). Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous and Mesoporous Materials, 98(1-3), 62-69. doi:10.1016/j.micromeso.2006.05.018

Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101. doi:10.1021/je0498917

LI, S. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135. doi:10.1016/j.memsci.2004.04.027

Van den Bergh, J., Zhu, W., Gascon, J., Moulijn, J. A., & Kapteijn, F. (2008). Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 316(1-2), 35-45. doi:10.1016/j.memsci.2007.12.051

L. B. McCusker and C.Baerlocher, in Proceed. 6th Inter. Zeolite Conf., ed. D. Olson and A. Bisio, Butterworths, 1984, p. 812

Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a029

[-]

This item appears in the following Collection(s)

Show full item record