- -

Energy-efficient execution of dense linear algebra algorithms on multi-core processors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Energy-efficient execution of dense linear algebra algorithms on multi-core processors

Show full item record

Alonso-Jordá, P.; Dolz Zaragozá, MF.; Mayo, R.; Quintana-Ortí, ES. (2013). Energy-efficient execution of dense linear algebra algorithms on multi-core processors. Cluster Computing. 16(3):497-509. doi:10.1007/s10586-012-0215-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45984

Files in this item

Item Metadata

Title: Energy-efficient execution of dense linear algebra algorithms on multi-core processors
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
This paper addresses the efficient exploitation of task-level parallelism, present in many dense linear alge- bra operations, from the point of view of both computa- tional performance and energy consumption. The strategies ...[+]
Subjects: Dense linear algebra , Power consumption , Multi-core processors , DVFS
Copyrigths: Cerrado
Source:
Cluster Computing. (issn: 1386-7857 )
DOI: 10.1007/s10586-012-0215-x
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10586-012-0215-x
Thanks:
This work was supported by project CICYT TIN2011-23283 and FEDER.
Type: Artículo

References

Borkar, S., Chien, A.: The future of microprocessors. Commun. ACM 54, 67–77 (2011)

Esmaeilzadeh, H., Blem, E., Amant, R.St., Sankaralingam, K., Burger, D.: Dark silicon and the end of multicore scaling. In: Proceeding of the 38th Annual International Symposium on Computer Architecture, ISCA’11, New York, NY, USA, pp. 365–376. ACM Press, New York (2011)

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou, J.Y., Boku, T., Braunschweig, B., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3 (2011) [+]
Borkar, S., Chien, A.: The future of microprocessors. Commun. ACM 54, 67–77 (2011)

Esmaeilzadeh, H., Blem, E., Amant, R.St., Sankaralingam, K., Burger, D.: Dark silicon and the end of multicore scaling. In: Proceeding of the 38th Annual International Symposium on Computer Architecture, ISCA’11, New York, NY, USA, pp. 365–376. ACM Press, New York (2011)

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou, J.Y., Boku, T., Braunschweig, B., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3 (2011)

Duranton, M., et al.: The HiPEAC vision (2010). Available from http://www.hipeac.net/roadmap

Feng, W.-c., Feng, X., Ce, R.: Green supercomputing comes of age. IT Prof. 10(1), 17–23 (2008)

Hsu, C., Feng, W.: A feasibility analysis of power awareness in commodity-based high-performance clusters. In: Cluster 2005 (2005)

Albers, S.: Energy-efficient algorithms. Commun. ACM 53, 86–96 (2010)

Cilk project home page (2012). http://supertech.csail.mit.edu/cilk/

SMP superscalar project home page (2012). http://www.bsc.es/plantillaG.php?cat_id=385

StarPU project home page (2012). http://runtime.bordeaux.inria.fr/StarPU/

Van Zee, F.G.: libflame: The Complete Reference (2009). www.lulu.com

Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

PLASMA project home page (2012). http://icl.cs.utk.edu/plasma/

Alonso, P., Dolz, M.F., Mayo, R., Quintana-Ortí, E.S.: Improving power efficiency on multi-core processors via slack control. In: Proceedings of the 2011 International Conference on High Performance Computing & Simulation (HPCS 2011). IEE Catalog Number CFP1178H-CDR, pp. 463–470 (2011)

Alonso, P., Dolz, M.F., Igual, F., Mayo, R., Quintana-Ortí, E.S.: DVFS-control techniques for dense linear algebra operations on multi-core processors. Comput. Sci. Res. Dev., 1–10 (2011). doi: 10.1007/s00450-011-0188-7

Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

Gunter, B.C., van de Geijn, R.A.: Parallel out-of-core computation and updating the QR factorization. ACM Trans. Math. Softw. 31(1), 60–78 (2005)

Etinski, M., Corbalán, J., Labarta, J., Valero, M.: Utilization driven power-aware parallel job scheduling. Comput. Sci. Res. Dev. 25(3–4), 207–216 (2010)

Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS’95, Washington, DC, USA, p. 374. IEEE Computer Society, Los Alamitos (1995)

Manzak, A., Chakrabarti, C.: Variable voltage task scheduling for minimizing energy or minimizing power. In: Proceedings on IEEE International Conference of the Acoustics, Speech, and Signal Processing, 2000, Washington, DC, USA, vol. 06, pp. 3239–3242. IEEE Computer Society, Los Alamitos (2000)

Gruian, F., Kuchcinski, K.: Lenes: task scheduling for low-energy systems using variable supply voltage processors. In: Proceedings of the 2001 Asia and South Pacific Design Automation Conference, ASP-DAC’01, New York, NY, USA, pp. 449–455. ACM Press, New York (2001)

Martin, S.M., Flautner, K., Mudge, T., Blaauw, D.: Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD’02, New York, NY, USA, pp. 721–725. ACM Press, New York (2002)

Zhang, Y., Hu, X.S., Chen, D.Z.: Task scheduling and voltage selection for energy minimization. In: Proceedings of the 39th Annual Design Automation Conference, DAC’02, New York, NY, USA, pp. 183–188. ACM Press, New York (2002)

Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K.: High performance computing—HiPC 2006. In: Proceedings of 13th International Conference, Bangalore, India, December 18–21, 2006. Lecture Notes in Computer Science, vol. 4297. Springer, Berlin (2006)

Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid-Volume 00, pp. 92–99. IEEE Computer Society, Los Alamitos (2009)

Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy of parallel programs using slack reclamation by DVFS in a power-scalable high performance cluster. In: IEEE International Conference on Cluster Computing, 2006, pp. 1–10. IEEE Press, New York (2007)

Shekar, V., Izadi, B.: Energy aware scheduling for DAG structured applications on heterogeneous and DVS enabled processors. In: International Conference on Green Computing, pp. 495–502. IEEE Press, New York (2010)

King, D., Ahmad, I., Sheikh, H.F.: Stretch and compress based re-scheduling techniques for minimizing the execution times of DAGs on multi-core processors under energy constraints. In: International Conference on Green Computing, pp. 49–60. IEEE Press, New York (2010)

Palli, K.: Scheduling dags for minimum finish time and power consumption on heterogeneous processors. Master’s thesis, Albers University, Albers, AL (2005)

Shaffer, L.R., Ritter, J.B., Meyer, W.L.: The Critical-Path Method. McGraw-Hill, New York (1965)

Li, R., Huang, H.C.: List scheduling for jobs with arbitrary release times and similar lengths. J. Sched. 10(6), 365–373 (2007)

Mtibaa, A., Ouni, B., Abid, M.: An efficient list scheduling algorithm for time placement problem. Comput. Electr. Eng. 33(4), 285–298 (2007)

Quintana-Ortí, G., Quintana-Ortí, E.S., van de Geijn, R.A., Van Zee, F.G., Chan, E.: Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans. Math. Softw. 36(3), 14:1–14:26 (2009)

[-]

This item appears in the following Collection(s)

Show full item record