- -

Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Liangping es_ES
dc.contributor.author Zhou, Haiyan es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Hendricks-Franssen, Hendrikus Johannes es_ES
dc.date.accessioned 2015-01-15T12:17:20Z
dc.date.available 2015-01-15T12:17:20Z
dc.date.issued 2012-03-27
dc.identifier.issn 0022-1694
dc.identifier.uri http://hdl.handle.net/10251/46102
dc.description.abstract [EN] Real-time data from on-line sensors offer the possibility to update environmental simulation models in real-time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent. © 2012 Elsevier B.V. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support by ENRESA (Project 0079000029) and the Spanish Ministry of Science and Innovation (Project CGL2011-23295). Extra travel Grants awarded to the first and second author by the Ministry of Education (Spain) are also acknowledged. Dr. Jichun Wu and an anonymous reviewer are grateful acknowledged for their comments which helped improving the final version of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data assimilation es_ES
dc.subject Ensemble Kalman filter es_ES
dc.subject Heterogeneity es_ES
dc.subject Hydraulic conductivity and porosity es_ES
dc.subject Multiple concentration data es_ES
dc.subject Stochastic transport es_ES
dc.subject Aquifers es_ES
dc.subject Characterization es_ES
dc.subject Computer simulation es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2012.01.037
dc.relation.projectID info:eu-repo/grantAgreement/ENRESA//0079000029/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li, L.; Zhou, H.; Gómez-Hernández, JJ.; Hendricks-Franssen, HJ. (2012). Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. Journal of Hydrology. 428:152-169. https://doi.org/10.1016/j.jhydrol.2012.01.037 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jhydrol.2012.01.037 es_ES
dc.description.upvformatpinicio 152 es_ES
dc.description.upvformatpfin 169 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 428 es_ES
dc.relation.senia 233947
dc.contributor.funder Empresa Nacional de Residuos Radiactivos
dc.contributor.funder Ministerio de Ciencia e Innovación


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem