- -

Spatial scale effect on the upper soil effective parameters of a distributed hydrological model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial scale effect on the upper soil effective parameters of a distributed hydrological model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrios, M. es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2015-01-23T18:48:58Z
dc.date.available 2015-01-23T18:48:58Z
dc.date.issued 2012-03
dc.identifier.issn 0885-6087
dc.identifier.uri http://hdl.handle.net/10251/46332
dc.description.abstract Nonlinear dynamics and spatial variability in hydrological systems make the formulation of scaling theories difficult. Therefore, the development of knowledge related to scale effects, scaling techniques, parameterization and linkages of parameters across scales is highly relevant. The main purpose of this work is to analyse the spatial effect of the static storage capacity parameter Hu and the saturated hydraulic conductivity parameter ks from microscale (sub-grid level) to mesoscale (grid level) and its implication to the definition of an optimum cell size. These two parameters describe the upper soil water characteristics in the infiltration process conceptualization of the TETIS hydrological model. At microscale, the spatial heterogeneity of Hu and ks was obtained generating random parameter fields through probability distribution functions and a spatial dependence model with pre-established correlation lengths. The effective parameters at mesoscale were calculated by solving the inverse problem for each parameter field. Results indicate that the adopted inverse formulation allows transferring the nonlinearity of the system from microscale to the mesoscale via non-stationary effective parameters. Their values at each cell and time step are in the range of zero to the mean value of the parameter at microscale. The stochastic simulations showed that the variance of the estimated effective parameters decreases when the ratio between mesoscale cell size and correlation length at microscale increases. For a ratio greater than 1, we found cell sizes having the characteristics of a representative elementary area (REA); in such case, the microscale variability pattern did not affect the system response at mesoscale.Copyright  2011 John Wiley & Sons, Ltd es_ES
dc.description.sponsorship This work was supported by the Programme ALBan, the European Union Programme of High Level Scholarships for Latin America, scholarship E07D402940DO, and by the Spanish research projects FLOOD-MED (CGL2008-06474-C02-02/BTE) and Consolider-Ingenio SCARCE (CSD2009-00065). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Hydrological Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spatial variability es_ES
dc.subject Effective parameters es_ES
dc.subject Representative elementary area es_ES
dc.subject Hydrological modelling es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Spatial scale effect on the upper soil effective parameters of a distributed hydrological model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hyp.8193
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-06474-C02-02/ES/SIMULACION Y ANALISIS DE FRECUENCIA DE LAS CRECIDAS CON ESCENARIOS DE CAMBIOS CLIMATICO Y MEDIOAMBIENTALES EN CUENCAS MEDITERRANEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/
dc.relation.projectID info:eu-repo/grantAgreement/EU/ALBan/E07D402940DO/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Barrios, M.; Francés, F. (2012). Spatial scale effect on the upper soil effective parameters of a distributed hydrological model. Hydrological Processes. 26(7):1022-1033. doi:10.1002/hyp.8193 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/hyp.8193 es_ES
dc.description.upvformatpinicio 1022 es_ES
dc.description.upvformatpfin 1033 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 243123
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.description.references Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16(1), 41-51. doi:10.1016/0309-1708(93)90028-e es_ES
dc.description.references Shivakoti, B. R., Fujii, S., Boontanon, S. K., Ihara, H., Moriya, M., & Tanaka, S. (2008). Grid size effects on a distributed water quantity-quality model in a hilly watershed. Water Science and Technology, 58(9), 1829-1836. doi:10.2166/wst.2008.566 es_ES
dc.description.references Blöschl, G., Sivapalan, M., Gupta, V., Beven, K., & Lettenmaier, D. (1997). Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 33(12), 2881-2881. doi:10.1029/97wr02826 es_ES
dc.description.references Blöschl, G., & Zehe, E. (2005). On hydrological predictability. Hydrological Processes, 19(19), 3923-3929. doi:10.1002/hyp.6075 es_ES
dc.description.references Ceddia, M. B., Vieira, S. R., Villela, A. L. O., Mota, L. dos S., Anjos, L. H. C. dos, & Carvalho, D. F. de. (2009). Topography and spatial variability of soil physical properties. Scientia Agricola, 66(3), 338-352. doi:10.1590/s0103-90162009000300009 es_ES
dc.description.references Dehotin, J., & Braud, I. (2008). Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrology and Earth System Sciences, 12(3), 769-796. doi:10.5194/hess-12-769-2008 es_ES
dc.description.references Didszun, J., & Uhlenbrook, S. (2008). Scaling of dominant runoff generation processes: Nested catchments approach using multiple tracers. Water Resources Research, 44(2). doi:10.1029/2006wr005242 es_ES
dc.description.references Fan, Y., & Bras, R. L. (1995). On the concept of a representative elementary area in catchment runoff. Hydrological Processes, 9(7), 821-832. doi:10.1002/hyp.3360090708 es_ES
dc.description.references Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032 es_ES
dc.description.references Francés F Vélez JJ Vélez JI Puricelli M 2002 Distributed modelling of large basins for a real time flood forecasting system in Spain Second Federal Interagency Hydrologic Modeling Conference es_ES
dc.description.references Ghan, S. J., Liljegren, J. C., Shaw, W. J., Hubbe, J. H., & Doran, J. C. (1997). Influence of Subgrid Variability on Surface Hydrology. Journal of Climate, 10(12), 3157-3166. doi:10.1175/1520-0442(1997)010<3157:iosvos>2.0.co;2 es_ES
dc.description.references Hellebrand, H., & van den Bos, R. (2008). Investigating the use of spatial discretization of hydrological processes in conceptual rainfall runoff modelling: a case study for the meso‐scale. Hydrological Processes, 22(16), 2943-2952. doi:10.1002/hyp.6909 es_ES
dc.description.references Heuvelink, G. B. M., & Pebesma, E. J. (1999). Spatial aggregation and soil process modelling. Geoderma, 89(1-2), 47-65. doi:10.1016/s0016-7061(98)00077-9 es_ES
dc.description.references Lee, G., Tachikawa, Y., & Takara, K. (2009). Interaction between Topographic and Process Parameters due to the Spatial Resolution of DEMs in Distributed Rainfall-Runoff Modeling. Journal of Hydrologic Engineering, 14(10), 1059-1069. doi:10.1061/(asce)he.1943-5584.0000098 es_ES
dc.description.references Liang, X., Guo, J., & Leung, L. R. (2004). Assessment of the effects of spatial resolutions on daily water flux simulations. Journal of Hydrology, 298(1-4), 287-310. doi:10.1016/j.jhydrol.2003.07.007 es_ES
dc.description.references Liang, X., Lettenmaier, D. P., & Wood, E. F. (1996). One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. Journal of Geophysical Research: Atmospheres, 101(D16), 21403-21422. doi:10.1029/96jd01448 es_ES
dc.description.references Liang, X., & Xie, Z. (2001). A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 24(9-10), 1173-1193. doi:10.1016/s0309-1708(01)00032-x es_ES
dc.description.references Merz, R., Parajka, J., & Blöschl, G. (2009). Scale effects in conceptual hydrological modeling. Water Resources Research, 45(9). doi:10.1029/2009wr007872 es_ES
dc.description.references Molnár, D. K., & Julien, P. Y. (2000). Grid-Size Effects on Surface Runoff Modeling. Journal of Hydrologic Engineering, 5(1), 8-16. doi:10.1061/(asce)1084-0699(2000)5:1(8) es_ES
dc.description.references Pinder, G. F., & Celia, M. A. (2006). Subsurface Hydrology. doi:10.1002/0470044209 es_ES
dc.description.references Rodriguez-Iturbe, I., & Mejía, J. M. (1974). On the transformation of point rainfall to areal rainfall. Water Resources Research, 10(4), 729-735. doi:10.1029/wr010i004p00729 es_ES
dc.description.references Rojas, R., Velleux, M., Julien, P. Y., & Johnson, B. E. (2008). Grid Scale Effects on Watershed Soil Erosion Models. Journal of Hydrologic Engineering, 13(9), 793-802. doi:10.1061/(asce)1084-0699(2008)13:9(793) es_ES
dc.description.references Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5). doi:10.1029/2008wr007327 es_ES
dc.description.references Seyfried, M. S., & Wilcox, B. P. (1995). Scale and the Nature of Spatial Variability: Field Examples Having Implications for Hydrologic Modeling. Water Resources Research, 31(1), 173-184. doi:10.1029/94wr02025 es_ES
dc.description.references Shrestha, R., Tachikawa, Y., & Takara, K. (2006). Input data resolution analysis for distributed hydrological modeling. Journal of Hydrology, 319(1-4), 36-50. doi:10.1016/j.jhydrol.2005.04.025 es_ES
dc.description.references Sivapalan, M. (2003). Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes, 17(5), 1037-1041. doi:10.1002/hyp.5109 es_ES
dc.description.references SIVAPALAN, M., TAKEUCHI, K., FRANKS, S. W., GUPTA, V. K., KARAMBIRI, H., LAKSHMI, V., … ZEHE, E. (2003). IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal, 48(6), 857-880. doi:10.1623/hysj.48.6.857.51421 es_ES
dc.description.references Sivapalan, M., & Woods, R. A. (1995). Evaluation of the effects of general circulation models’ subgrid variability and patchiness of rainfall and soil moisture on land surface water balance fluxes. Hydrological Processes, 9(5-6), 697-717. doi:10.1002/hyp.3360090515 es_ES
dc.description.references Vauclin, M., Elrick, D. E., Thony, J. L., Vachaud, G., Revol, P., & Ruelle, P. (1994). Hydraulic conductivity measurements of the spatial variability of a loamy soil. Soil Technology, 7(3), 181-195. doi:10.1016/0933-3630(94)90020-5 es_ES
dc.description.references Vázquez, R. F., Feyen, L., Feyen, J., & Refsgaard, J. C. (2002). Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrological Processes, 16(2), 355-372. doi:10.1002/hyp.334 es_ES
dc.description.references Vélez JJ Francés F López F 2007 Calibration strategy for hydrological distributed conceptual models Earth: Our Changing Planet. Proceedings of IUGG XXIV General Assembly 4675 es_ES
dc.description.references Vélez, J. J., Puricelli, M., López Unzu, F., & Francés, F. (2009). Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrology and Earth System Sciences, 13(2), 229-246. doi:10.5194/hess-13-229-2009 es_ES
dc.description.references Viney N Sivapalan M 2001 Scaling of hydrologic conceptualizations: Approaches to handling subgrid variability Proceedings of MODSIM 2001, International Congress on Modelling and Simulation 383 388 es_ES
dc.description.references Viney, N. R., & Sivapalan, M. (2004). A framework for scaling of hydrologic conceptualizations based on a disaggregation–aggregation approach. Hydrological Processes, 18(8), 1395-1408. doi:10.1002/hyp.1419 es_ES
dc.description.references Wood, E. F. (1998). Scale Analyses for Land-Surface Hydrology. Scale Dependence and Scale Invariance in Hydrology, 1-29. doi:10.1017/cbo9780511551864.002 es_ES
dc.description.references Wood, E. F., Sivapalan, M., Beven, K., & Band, L. (1988). Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology, 102(1-4), 29-47. doi:10.1016/0022-1694(88)90090-x es_ES
dc.description.references Woods, R., Sivapalan, M., & Duncan, M. (1995). Investigating the representative elementary area concept: An approach based on field data. Hydrological Processes, 9(3-4), 291-312. doi:10.1002/hyp.3360090306 es_ES
dc.description.references Zehe, E., & Blöschl, G. (2004). Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions. Water Resources Research, 40(10). doi:10.1029/2003wr002869 es_ES
dc.description.references Zeng, X.-M., Zhao, M., Su, B.-K., Tang, J.-P., Zheng, Y.-Q., Zhang, Y.-J., & Chen, J. (2002). Effects of subgrid heterogeneities in soil infiltration capacity and precipitation on regional climate: a sensitivity study. Theoretical and Applied Climatology, 73(3-4), 207-221. doi:10.1007/s00704-002-0673-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem