- -

Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Eiras Fernández, Jesús Nuño es_ES
dc.contributor.author Kundu, Tribikram es_ES
dc.contributor.author Bonilla Salvador, María Mercedes es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2015-01-27T18:51:29Z
dc.date.available 2015-01-27T18:51:29Z
dc.date.issued 2013-06
dc.identifier.issn 0963-8695
dc.identifier.uri http://hdl.handle.net/10251/46457
dc.description.abstract Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant (AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. However, ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from the fiber addition disappears as the structure becomes old. The aim of this paper is monitoring GRC ageing by nondestructive evaluation (NDE) techniques. Two different NDE techniques (1) nonlinear impact resonant acoustic spectroscopy analysis and (2) propagating ultrasonic guided waves are used for this purpose. Both techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens, the aged specimens are found to exhibit more linear behavior, have more stiffness but less toughness. Finally, undisturbed fragments on the fracture surface from mechanical tests are inspected under the electron microscope, to understand the fundamental mechanisms that cause the change in the GRC behavior with ageing. es_ES
dc.description.sponsorship The authors want to acknowledge the financial support of the Ministerio de Ciencia e Innovacion MICINN, Spain, and FEDER funding (Ondacem Project: BIA 2010-19933) and BES-2011-044624. Also thanks to PAID-02-11 Program from Universitat Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Nondestructive Evaluation - NDT and E International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nondestructive evaluation es_ES
dc.subject Nonlinear impact resonant acoustic spectroscopy es_ES
dc.subject Ultrasonic guided waves es_ES
dc.subject Material ageing es_ES
dc.subject Glass fiber reinforced cement es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10921-013-0183-y
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-02-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIA2010-19933/ES/ESTUDIO DEL COMPORTAMIENTO NO LINEAL DE ONDAS MECANICAS PARA LA CARACTERIZACION DE MATERIALES BASADOS EN CEMENTO Y SU DURABILIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-044624/ES/BES-2011-044624/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Eiras Fernández, JN.; Kundu, T.; Bonilla Salvador, MM.; Paya Bernabeu, JJ. (2013). Nondestructive monitoring of ageing of Alkali resistant Glass fiber reinforced cement (GRC). Journal of Nondestructive Evaluation - NDT and E International. 32:300-314. https://doi.org/10.1007/s10921-013-0183-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10921-013-0183-y es_ES
dc.description.upvformatpinicio 300 es_ES
dc.description.upvformatpfin 314 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.relation.senia 253000
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Bentur, A., Fibre, M.S.: Reinforced Cementitious Composites, 2nd edn. Taylor and Francis, New York (2007) es_ES
dc.description.references Purnell, P., Short, N.R., Page, C.L.: A static fatigue model for the durability of glass fibre reinforced cement. J. Mater. Sci. 36(22), 5385–5390 (2001) es_ES
dc.description.references Ferreira, J.G., Branco, F.A.: Structural application of GRC in telecommunication towers. Constr. Build. Mater. 21(1), 19–28 (2007) es_ES
dc.description.references Bentur, A., Ben-Bassat, M., Schneider, D.: Durability of glass-fiber-reinforced cements with different alkali-resistant glass fibers. J. Am. Ceram. Soc. 68(4), 203–208 (1985) es_ES
dc.description.references Cheng, J., Liang, W., Hu, Y., Chen, Q., Frischat, G.H.: Development of a new alkali resistant coating. J. Sol-Gel Sci. Technol. 27(3), 309–313 (2003) es_ES
dc.description.references Liang, W., Cheng, J., Hu, Y., Luo, H.: Improved properties of GRC composites using commercial E-glass fibers with new coatings. Mater. Res. Bull. 37(4), 641–646 (2002) es_ES
dc.description.references Payá, J., Bonilla, M., Borrachero, M.V., Monzó, J., Peris-Mora, E., Lalinde, L.F.: Reusing fly ash in glass fibre reinforced cement: a new generation of high-quality GRC composites. Waste Manag. 27(10), 1416–1421 (2007) es_ES
dc.description.references Zhang, Y., Sun, W., Shang, L., Pan, G.: The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites. Cem. Concr. Res. 27(12), 1885–1891 (1997) es_ES
dc.description.references Purnell, P., Short, N., Page, C.: Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis. Composites, Part A, Appl. Sci. Manuf. 32(12), 1777–1787 (2001) es_ES
dc.description.references EN 1170-8:2008. Test method for glass-fibre reinforced cement. Cyclic weathering type test es_ES
dc.description.references Purnell, P.: Interpretation of climatic temperature variations for accelerated ageing models. J. Mater. Sci. 39(1), 113–118 (2004) es_ES
dc.description.references Enfedaque, A., Sánchez Paradela, L., Sánchez-Gálvez, V.: An alternative methodology to predict aging effects on the mechanical properties of glass fiber reinforced cements (GRC). Constr. Build. Mater. 27(1), 425–431 (2012) es_ES
dc.description.references Litherland, K.L., Maguire, P., Proctor, B.A.: A test method for the strength of glass fibres in cement. Int. J. Cem. Compos. Lightweight Concr. 6(1), 39–45 (1984) es_ES
dc.description.references Itterbeeck, P., Cuypers, H., Orlowsky, J., Wastiels, J.: Evaluation of the strand in cement (SIC) test for GRCs with improved durability. Mater. Struct. 41(6), 1109–1116 (2007) es_ES
dc.description.references Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30 (1999) es_ES
dc.description.references Johnson, P.A.: Nonequilibrium nonlinear dynamics in solids: state of the art. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 49–69. Springer, New York (2006) es_ES
dc.description.references Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995) es_ES
dc.description.references Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Academic Press, New York (2003) es_ES
dc.description.references Van Den Abeele, K.E.A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000) es_ES
dc.description.references Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010) es_ES
dc.description.references Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. Nondestruct. Test. Eval. Int. 44(8), 721–727 (2011) es_ES
dc.description.references Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011) es_ES
dc.description.references Eiras, J.N., Popovics, J.S., Borrachero, M.V., Monzó, J., Payá, J.: Nonlinear impact resonant acoustic spectroscopy to discern mechanical damage in cement based materials. In: 15th International Conference on Experimental Mechanics, Porto, Portugal (2012) es_ES
dc.description.references Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2004) es_ES
dc.description.references Kundu, T.: Ultrasonic and Electromagnetic NDE for Structure and Material Characterization—Engineering and Biomedical Applications. CRC Press, Boca Raton (2012) es_ES
dc.description.references Dutta, D., Sohn, H., Harries, K.A., Rizzo, P.: A nonlinear acoustic technique for crack detection in metallic structures. Struct. Health Monit. 8(3), 251–262 (2009) es_ES
dc.description.references Aymerich, F., Staszewski, W.J.: Impact damage detection in composite laminates using nonlinear acoustics. Composites, Part A, Appl. Sci. Manuf. 41(9), 1084–1092 (2010) es_ES
dc.description.references EN 1170-1:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring the consistency of the matrix, “Slump test” method es_ES
dc.description.references Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: EUROCRYPT ’95. Lecture Notes in Computer Science, vol. 921, pp. 106–120. Springer, Berlin (1995) es_ES
dc.description.references EN 1170-5:1998. Precast concrete products. Test method for glass-fibre reinforced cement. Measuring bending strength, “complete bending test” method es_ES
dc.description.references Romero, R., Zúnica, L.R.: Métodos Estadísticos en Ingeniería. Universitat Politècnica València, Valencia (2005) es_ES
dc.description.references Kundu, T.: Fundamentals of Fracture Mechanics. CRC Press, Boca Raton (2008) es_ES
dc.description.references ASTM C 215:08. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens (2008) es_ES
dc.description.references Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Butterworth-Heinemann, Oxford (2003) es_ES
dc.description.references Zhu, W., Bartos, P.J.M.: Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method. Cem. Concr. Res. 27(11), 1701–1711 (1997) es_ES
dc.description.references Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L., Majumdar, A.J.: Determination of bond strength in glass fibre reinforced cement using petrography and image analysis. J. Mater. Sci. 35(18), 4653–4659 (2000) es_ES
dc.description.references Visalvanich, K., Naaman, A.E.: Fracture model for fiber reinforced concrete. J. ACI Proc. 80(2), 128–138 (1983) es_ES
dc.description.references Kundu, T., Jang, H.S., Cha, Y.H., Desai, C.S.: A simple model to predict the effect of volume fraction, diameter, and length of fibers on strength variation of fiber reinforced brittle matrix composites. Int. J. Numer. Anal. Methods Geomech. 24, 655–673 (2000) es_ES
dc.description.references Li, V.C., Maalej, M.: Toughening in cement based composites. Part II: fiber reinforced composites. Cem. Concr. Compos. 18, 239–249 (1996) es_ES
dc.description.references Van Den Abeele, K.E.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem