dc.contributor.author |
Bueno Martínez, Antonio
|
es_ES |
dc.contributor.author |
Torres Górriz, Benjamín
|
es_ES |
dc.contributor.author |
Barrera Vilar, David
|
es_ES |
dc.contributor.author |
Calderón García, Pedro Antonio
|
es_ES |
dc.contributor.author |
Lloris, J.
|
es_ES |
dc.contributor.author |
López, M.
|
es_ES |
dc.contributor.author |
Sales Maicas, Salvador
|
es_ES |
dc.date.accessioned |
2015-02-05T18:33:47Z |
|
dc.date.available |
2015-02-05T18:33:47Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
0091-3286 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/46786 |
|
dc.description.abstract |
We present the results of a real fire test using optical fiber sensors embedded in concrete samples. The temperature curve used in this experiment is described in the Spanish/European standard UNE-EN 1363-1 temperature profile for normalized concrete resistance to real fire tests, reaching temperatures of more than 1000◦C inside the fire chamber and up to 600◦C inside the concrete samples. Three types of optical sensors have been embedded in concrete: 1. standard fiber Bragg
gratings inscribed in photosensitive germanium-boron co-doped fiber, 2. regenerated fiber Bragg grating (RFGB) inscribed in germanium doped fiber, and 3. RFBG inscribed in germanium-boron co-doped fiber. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3658760] |
es_ES |
dc.description.sponsorship |
The authors gratefully acknowledge research funding by the Spanish Ministry of Science and Innovation through Project SOPROMAC P41/08. |
en_EN |
dc.language |
Español |
es_ES |
dc.publisher |
Society of Photo-optical Instrumentation Engineers (SPIE) |
es_ES |
dc.relation.ispartof |
Optical Engineering |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Optical fiber temperature sensor |
es_ES |
dc.subject |
High temperature |
es_ES |
dc.subject |
Fiber Bragg grating |
es_ES |
dc.subject |
Regenerated fiber Bragg grating |
es_ES |
dc.subject |
Fire test |
es_ES |
dc.subject.classification |
INGENIERIA DE LA CONSTRUCCION |
es_ES |
dc.subject.classification |
TEORIA DE LA SEÑAL Y COMUNICACIONES |
es_ES |
dc.title |
Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1117/1.3658760 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MFOM//TRANSeINFRA2008-0041/ES/Desarrollo Sensores Avanzados Fibra Óptica para Determinación de Propiedades de Materiales y Salud Estructural.-SOPROMAC/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions |
es_ES |
dc.description.bibliographicCitation |
Bueno Martínez, A.; Torres Górriz, B.; Barrera Vilar, D.; Calderón García, PA.; Lloris, J.; López, M.; Sales Maicas, S. (2011). Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test. Optical Engineering. 50(12):1244041-1244047. https://doi.org/10.1117/1.3658760 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1117/1.3658760 |
es_ES |
dc.description.upvformatpinicio |
1244041 |
es_ES |
dc.description.upvformatpfin |
1244047 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
50 |
es_ES |
dc.description.issue |
12 |
es_ES |
dc.relation.senia |
206736 |
|
dc.contributor.funder |
Ministerio de Fomento |
es_ES |
dc.description.references |
Luccioni, B. M., Figueroa, M. I., & Danesi, R. F. (2003). Thermo-mechanic model for concrete exposed to elevated temperatures. Engineering Structures, 25(6), 729-742. doi:10.1016/s0141-0296(02)00209-2 |
es_ES |
dc.description.references |
Abdel-Fattah, H., & Hamoush, S. A. (1997). Variation of the fracture toughness of concrete with temperature. Construction and Building Materials, 11(2), 105-108. doi:10.1016/s0950-0618(97)00005-6 |
es_ES |
dc.description.references |
Da Silva, J. C. C., Martelli, C., Kalinowski, H. J., Penner, E., Canning, J., & Groothoff, N. (2007). Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings. Optics and Lasers in Engineering, 45(1), 88-92. doi:10.1016/j.optlaseng.2006.03.003 |
es_ES |
dc.description.references |
Lin, Y. B., Chern, J. C., Chang, K.-C., Chan, Y.-W., & Wang, L. A. (2004). The utilization of fiber Bragg grating sensors to monitor high performance concrete at elevated temperature. Smart Materials and Structures, 13(4), 784-790. doi:10.1088/0964-1726/13/4/016 |
es_ES |
dc.description.references |
Lönnermark, A., Hedekvist, P. O., & Ingason, H. (2008). Gas temperature measurements using fibre Bragg grating during fire experiments in a tunnel. Fire Safety Journal, 43(2), 119-126. doi:10.1016/j.firesaf.2007.06.001 |
es_ES |
dc.description.references |
Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377 |
es_ES |
dc.description.references |
Liou, C. L., Wang, L. A., & Shih, M. C. (1997). Characteristics of hydrogenated fiber Bragg gratings. Applied Physics A: Materials Science & Processing, 64(2), 191-197. doi:10.1007/s003390050463 |
es_ES |
dc.description.references |
Fokine, M. (2004). Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers. Journal of Non-Crystalline Solids, 349, 98-104. doi:10.1016/j.jnoncrysol.2004.08.208 |
es_ES |
dc.description.references |
Bandyopadhyay, S., Canning, J., Stevenson, M., & Cook, K. (2008). Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Optics Letters, 33(16), 1917. doi:10.1364/ol.33.001917 |
es_ES |
dc.description.references |
Ropelewski, L., & Neufeld, R. D. (1999). Thermal Inertia Properties of Autoclaved Aerated Concrete. Journal of Energy Engineering, 125(2), 59-75. doi:10.1061/(asce)0733-9402(1999)125:2(59) |
es_ES |