- -

Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test

Show simple item record

Files in this item

dc.contributor.author Bueno Martínez, Antonio es_ES
dc.contributor.author Torres Górriz, Benjamín es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.contributor.author Lloris, J. es_ES
dc.contributor.author López, M. es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.date.accessioned 2015-02-05T18:33:47Z
dc.date.available 2015-02-05T18:33:47Z
dc.date.issued 2011
dc.identifier.issn 0091-3286
dc.identifier.uri http://hdl.handle.net/10251/46786
dc.description.abstract We present the results of a real fire test using optical fiber sensors embedded in concrete samples. The temperature curve used in this experiment is described in the Spanish/European standard UNE-EN 1363-1 temperature profile for normalized concrete resistance to real fire tests, reaching temperatures of more than 1000◦C inside the fire chamber and up to 600◦C inside the concrete samples. Three types of optical sensors have been embedded in concrete: 1. standard fiber Bragg gratings inscribed in photosensitive germanium-boron co-doped fiber, 2. regenerated fiber Bragg grating (RFGB) inscribed in germanium doped fiber, and 3. RFBG inscribed in germanium-boron co-doped fiber. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3658760] es_ES
dc.description.sponsorship The authors gratefully acknowledge research funding by the Spanish Ministry of Science and Innovation through Project SOPROMAC P41/08. en_EN
dc.language Español es_ES
dc.publisher Society of Photo-optical Instrumentation Engineers (SPIE) es_ES
dc.relation.ispartof Optical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optical fiber temperature sensor es_ES
dc.subject High temperature es_ES
dc.subject Fiber Bragg grating es_ES
dc.subject Regenerated fiber Bragg grating es_ES
dc.subject Fire test es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1117/1.3658760
dc.relation.projectID info:eu-repo/grantAgreement/MFOM//TRANSeINFRA2008-0041/ES/Desarrollo Sensores Avanzados Fibra Óptica para Determinación de Propiedades de Materiales y Salud Estructural.-SOPROMAC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Bueno Martínez, A.; Torres Górriz, B.; Barrera Vilar, D.; Calderón García, PA.; Lloris, J.; López, M.; Sales Maicas, S. (2011). Optical fiber sensors embedded in concrete for measurement of temperature in a real fire test. Optical Engineering. 50(12):1244041-1244047. https://doi.org/10.1117/1.3658760 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1117/1.3658760 es_ES
dc.description.upvformatpinicio 1244041 es_ES
dc.description.upvformatpfin 1244047 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 206736
dc.contributor.funder Ministerio de Fomento es_ES
dc.description.references Luccioni, B. M., Figueroa, M. I., & Danesi, R. F. (2003). Thermo-mechanic model for concrete exposed to elevated temperatures. Engineering Structures, 25(6), 729-742. doi:10.1016/s0141-0296(02)00209-2 es_ES
dc.description.references Abdel-Fattah, H., & Hamoush, S. A. (1997). Variation of the fracture toughness of concrete with temperature. Construction and Building Materials, 11(2), 105-108. doi:10.1016/s0950-0618(97)00005-6 es_ES
dc.description.references Da Silva, J. C. C., Martelli, C., Kalinowski, H. J., Penner, E., Canning, J., & Groothoff, N. (2007). Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings. Optics and Lasers in Engineering, 45(1), 88-92. doi:10.1016/j.optlaseng.2006.03.003 es_ES
dc.description.references Lin, Y. B., Chern, J. C., Chang, K.-C., Chan, Y.-W., & Wang, L. A. (2004). The utilization of fiber Bragg grating sensors to monitor high performance concrete at elevated temperature. Smart Materials and Structures, 13(4), 784-790. doi:10.1088/0964-1726/13/4/016 es_ES
dc.description.references Lönnermark, A., Hedekvist, P. O., & Ingason, H. (2008). Gas temperature measurements using fibre Bragg grating during fire experiments in a tunnel. Fire Safety Journal, 43(2), 119-126. doi:10.1016/j.firesaf.2007.06.001 es_ES
dc.description.references Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442-1463. doi:10.1109/50.618377 es_ES
dc.description.references Liou, C. L., Wang, L. A., & Shih, M. C. (1997). Characteristics of hydrogenated fiber Bragg gratings. Applied Physics A: Materials Science & Processing, 64(2), 191-197. doi:10.1007/s003390050463 es_ES
dc.description.references Fokine, M. (2004). Underlying mechanisms, applications, and limitations of chemical composition gratings in silica based fibers. Journal of Non-Crystalline Solids, 349, 98-104. doi:10.1016/j.jnoncrysol.2004.08.208 es_ES
dc.description.references Bandyopadhyay, S., Canning, J., Stevenson, M., & Cook, K. (2008). Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Optics Letters, 33(16), 1917. doi:10.1364/ol.33.001917 es_ES
dc.description.references Ropelewski, L., & Neufeld, R. D. (1999). Thermal Inertia Properties of Autoclaved Aerated Concrete. Journal of Energy Engineering, 125(2), 59-75. doi:10.1061/(asce)0733-9402(1999)125:2(59) es_ES


This item appears in the following Collection(s)

Show simple item record