- -

Complete partial metric spaces have partially metrizable computational models

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Complete partial metric spaces have partially metrizable computational models

Show full item record

Romaguera Bonilla, S.; Tirado Peláez, P.; Valero Sierra, Ó. (2012). Complete partial metric spaces have partially metrizable computational models. International Journal of Computer Mathematics. 89(3):284-290. https://doi.org/10.1080/00207160.2011.559229

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/46841

Files in this item

Item Metadata

Title: Complete partial metric spaces have partially metrizable computational models
Author: Romaguera Bonilla, Salvador Tirado Peláez, Pedro Valero Sierra, Óscar
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We show that the domain of formal balls of a complete partial metric space (X, p) can be endowed with a complete partial metric that extends p and induces the Scott topology. This result, that generalizes well-known ...[+]
Subjects: Computational model , Complete partial metric , Domain , Formal ball , Scott topology
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Computer Mathematics. (issn: 0020-7160 )
DOI: 10.1080/00207160.2011.559229
Publisher:
Taylor & Francis Ltd
Publisher version: http://dx.doi.org/10.1080/00207160.2011.559229
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2009-12872-C02-01/ES/Construccion De Casi-Metricas Fuzzy, De Distancias De Complejidad Y De Dominios Cuantitativos. Aplicaciones/
Thanks:
The authors acknowledge the support of the Spanish Ministry of Science and Innovation, under grant MTM2009-12872-C02-01.
Type: Artículo

References

ALI-AKBARI, M., HONARI, B., POURMAHDIAN, M., & REZAII, M. M. (2009). The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science, 19(2), 337-355. doi:10.1017/s0960129509007439

Edalat, A., & Heckmann, R. (1998). A computational model for metric spaces. Theoretical Computer Science, 193(1-2), 53-73. doi:10.1016/s0304-3975(96)00243-5

Edalat, A., & Sünderhauf, P. (1999). Computable Banach spaces via domain theory. Theoretical Computer Science, 219(1-2), 169-184. doi:10.1016/s0304-3975(98)00288-6 [+]
ALI-AKBARI, M., HONARI, B., POURMAHDIAN, M., & REZAII, M. M. (2009). The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science, 19(2), 337-355. doi:10.1017/s0960129509007439

Edalat, A., & Heckmann, R. (1998). A computational model for metric spaces. Theoretical Computer Science, 193(1-2), 53-73. doi:10.1016/s0304-3975(96)00243-5

Edalat, A., & Sünderhauf, P. (1999). Computable Banach spaces via domain theory. Theoretical Computer Science, 219(1-2), 169-184. doi:10.1016/s0304-3975(98)00288-6

Flagg, B., & Kopperman, R. (1997). Computational Models for Ultrametric Spaces. Electronic Notes in Theoretical Computer Science, 6, 151-159. doi:10.1016/s1571-0661(05)80164-1

Heckmann, R. (1999). Applied Categorical Structures, 7(1/2), 71-83. doi:10.1023/a:1008684018933

Kopperman, R., Künzi, H.-P. A., & Waszkiewicz, P. (2004). Bounded complete models of topological spaces. Topology and its Applications, 139(1-3), 285-297. doi:10.1016/j.topol.2003.12.001

Krötzsch, M. (2006). Generalized ultrametric spaces in quantitative domain theory. Theoretical Computer Science, 368(1-2), 30-49. doi:10.1016/j.tcs.2006.05.037

Künzi, H.-P. A. (2001). Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology. History of Topology, 853-968. doi:10.1007/978-94-017-0470-0_3

LAWSON, J. (1997). Spaces of maximal points. Mathematical Structures in Computer Science, 7(5), 543-555. doi:10.1017/s0960129597002363

Martin, K. (1998). Domain theoretic models of topological spaces. Electronic Notes in Theoretical Computer Science, 13, 173-181. doi:10.1016/s1571-0661(05)80221-x

Matthews, S. G.Partial metric topology. Procedings of the 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), pp. 183–197

Rodríguez-López, J., Romaguera, S., & Valero, O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics, 85(3-4), 623-630. doi:10.1080/00207160701210653

Romaguera, S., & Valero, O. (2009). A quasi-metric computational model from modular functions on monoids. International Journal of Computer Mathematics, 86(10-11), 1668-1677. doi:10.1080/00207160802691652

ROMAGUERA, S., & VALERO, O. (2009). A quantitative computational model for complete partial metric spaces via formal balls. Mathematical Structures in Computer Science, 19(3), 541-563. doi:10.1017/s0960129509007671

ROMAGUERA, S., & VALERO, O. (2010). Domain theoretic characterisations of quasi-metric completeness in terms of formal balls. Mathematical Structures in Computer Science, 20(3), 453-472. doi:10.1017/s0960129510000010

Rutten, J. J. M. M. (1998). Weighted colimits and formal balls in generalized metric spaces. Topology and its Applications, 89(1-2), 179-202. doi:10.1016/s0166-8641(97)00224-1

Schellekens, M. P. (2003). A characterization of partial metrizability: domains are quantifiable. Theoretical Computer Science, 305(1-3), 409-432. doi:10.1016/s0304-3975(02)00705-3

Smyth, M. B. (2006). The constructive maximal point space and partial metrizability. Annals of Pure and Applied Logic, 137(1-3), 360-379. doi:10.1016/j.apal.2005.05.032

Waszkiewicz, P. (2003). Applied Categorical Structures, 11(1), 41-67. doi:10.1023/a:1023012924892

WASZKIEWICZ, P. (2006). Partial metrisability of continuous posets. Mathematical Structures in Computer Science, 16(02), 359. doi:10.1017/s0960129506005196

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record