- -

A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities

Show simple item record

Files in this item

dc.contributor.author Haro Monteagudo, David es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Andreu Álvarez, Joaquín
dc.date.accessioned 2015-02-12T12:11:34Z
dc.date.available 2015-02-12T12:11:34Z
dc.date.issued 2012
dc.identifier.issn 0920-4741
dc.identifier.uri http://hdl.handle.net/10251/46946
dc.description.abstract [EN] The allocation of water resources between different users is a traditional problem in many river basins. The objective is to obtain the optimal resource distribution and the associated circulating flows through the system. Network flow programming is a common technique for solving this problem. This optimisation procedure has been used many times for developing applications for concrete water systems, as well as for developing complete decision support systems. As long as many aspects of a river basin are not purely linear, the study of non-linearities will also be of great importance in water resources systems optimisation. This paper presents a generalised model for solving the optimal allocation of water resources in schemes where the objectives are minimising the demand deficits, complying with the required flows in the river and storing water in reservoirs. Evaporation from reservoirs and returns from demands are considered, and an iterative methodology is followed to solve these two non-network constraints. The model was applied to the Duero River basin (Spain). Three different network flow algorithms (Out-of-Kilter, RELAX-IVand NETFLO) were used to solve the allocation problem. Certain convergence issues were detected during the iterative process. There is a need to relate the data from the studied systems with the convergence criterion to be able to find the convergence criterion which yields the best results possible without requiring a long calculation time. es_ES
dc.description.sponsorship We thank the Spanish Ministry of Economy and Competitivity (Comision Interministerial de Ciencia y Tecnologia, CICYT) for funding the projects INTEGRAME (contract CGL2009-11798) and SCARCE (program Consolider-Ingenio 2010, project CSD2009-00065). We also thank the European Commission (Directorate-General for Research & Innovation) for funding the project DROUGHT-R&SPI (program FP7-ENV-2011, project 282769). And last, but not least, to the Fundacion Instituto Euromediterraneo del Agua with the project "Estudio de Adaptaciones varias del modelo de optimizacion de gestiones de recursos hidricos Optiges". en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MINECO-CICYT/INTEGRAME/CGL2009-11798
dc.relation MINECO-CICYT/SCARCE/CONSOLIDER-INGENIO2010/CSD2009-00065
dc.relation.ispartof Water Resources Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Network flows es_ES
dc.subject Optimisation models es_ES
dc.subject Wáter allocation es_ES
dc.subject Non-linearities es_ES
dc.subject Wáter resources management es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11269-012-0129-7
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/282769/EU
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Haro Monteagudo, D.; Paredes Arquiola, J.; Solera Solera, A.; Andreu Álvarez, J. (2012). A Model for Solving the Optimal Water Allocation Problem in River Basins with Network Flow Programming When Introducing Non-Linearities. Water Resources Management. 26(14):4059-4071. https://doi.org/10.1007/s11269-012-0129-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11269-012-0129-7 es_ES
dc.description.upvformatpinicio 4059 es_ES
dc.description.upvformatpfin 4071 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 239281
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología
dc.contributor.funder Fundación Instituto Euromediterráneo del Agua
dc.contributor.funder European Commission
dc.relation.references Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory, algorithms and applications. Prentice Hall, New York es_ES
dc.relation.references Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water resources planning and operational management. J Hydrol 177:269–291 es_ES
dc.relation.references Bersetkas D (1985) A unified framework for primal-dual methods in minimum cost network flows problems. Math Program 32:125–145 es_ES
dc.relation.references Bersetkas D, Tseng P (1988) The relax codes for linear minimum cost network flow problems. Ann Oper Res 13:125–190 es_ES
dc.relation.references Bersetkas D, Tseng P (1994) RELAX-IV: A faster version of the RELAX code for solving minimum cost flow problems. Completion Report under NSFGrant CCR-9103804. Dept. of Electrical Engineering and Computer Science, MIT, Boston es_ES
dc.relation.references Chou F, Wu C, Lin C (2006) Simulating multi-reservoir operation rules by network flow model. ASCE Conf Proc 212:33 es_ES
dc.relation.references Chung F, Archer M, DeVries J (1989) Network flow algorithm applied to California aqueduct simulation. J Water Resour Plan Manag 115:131–147 es_ES
dc.relation.references Ford L, Fulkerson D (1962) Flows in networks. Princeton University Press, Princeton es_ES
dc.relation.references Fredericks J, Labadie J, Altenhofen J (1998) Decision support system for conjunctive stream-aquifer management. J Water Resour Plan Manag 124:69–78 es_ES
dc.relation.references Harou JJ, Medellín-Azuara J, Zhu T et al (2010) Economic consequences of optimized water management for a prolonged, severe drought in California. Water Resour Res 46:W05522 es_ES
dc.relation.references Hsu N, Cheng K (2002) Network Flow Optimization Model for Basin-Scale Water Supply Planning. J Water Resour Plan Manag 128:102–112 es_ES
dc.relation.references Ilich N (1993) Improvement of the return flow allocation in the Water Resources Management Model of Alberta Environment. Can J Civ Eng 20:613–621 es_ES
dc.relation.references Ilich N (2009) Limitations of network flow algorithms in river basin modeling. J Water Resour Plan Manag 135:48–55 es_ES
dc.relation.references Kennington JL, Helgason RV (1980) Algorithms for network programming. John Wiley and Sons, New York es_ES
dc.relation.references Khaliquzzaman, Chander S (1997) Network flow programming model for multireservoir sizing. J Water Resour Plan Manag 123:15–21 es_ES
dc.relation.references Kuczera G (1989) Fast Multireservoir Mulltiperiod Linear Programming Models. Water Resour Res 25:169–176 es_ES
dc.relation.references Kuczera G (1993) Network linear programming codes for water-supply headworks modeling. J Water Resour Plan Manag 119:412–417 es_ES
dc.relation.references Labadie J (2004) Optimal operation of multireservoir systems: state-of-the-art review. J Water Resour Plan Manag 130:93–111 es_ES
dc.relation.references Labadie J (2006) MODSIM: river basin management decision support system. In: Singh W, Frevert D (eds) Watershed models. CRC, Boca Raton, pp 569–592 es_ES
dc.relation.references Labadie J, Baldo M, Larson R (2000) MODSIM: decision support system for river basin management. Documentation and user manual. Dept. Of Civil Engineering, CSU, Fort Collins es_ES
dc.relation.references Manca A, Sechi G, Zuddas P (2010) Water supply network optimisation using equal flow algorithms. Water Resour Manag 24:3665–3678 es_ES
dc.relation.references MMA (2000) Libro blanco del agua en España. Ministerio de Medio Ambiente, Secretaría general Técnica, Centro de Publicaciones es_ES
dc.relation.references MMA (2008) Confederación Hidrográfica del Duero. Memoria 2008. http://www.chduero.es/Inicio/Publicaciones/tabid/159/Default.aspx . Last accessed 25 June 2012 es_ES
dc.relation.references Perera B, James B, Kularathna M (2005) computer software tool REALM for sustainable water allocation and management. J Environ Manag 77:291–300 es_ES
dc.relation.references Rani D, Moreira M (2010) Simulation-optimization modeling: a survey and potential application in reservoir systems operation. Water Resour Manag 24:1107–1138 es_ES
dc.relation.references Reca J, Roldán J, Alcaide M, López R, Camacho E (2001a) Optimisation model for water allocation in deficit irrigation systems I. Description of the model. Agric Water Manag 48:103–116 es_ES
dc.relation.references Reca J, Roldán J, Alcaide M, López R, Camacho E (2001b) Optimisation model for water allocation in deficit irrigation systems II. Application to the Bembézar irrigation system. Agric Water Manag 48:117–132 es_ES
dc.relation.references Sechi G, Zuddas P (2008) Multiperiod hypergraph models for water systems optimization. Water Resour Manag 22:307–320 es_ES
dc.relation.references Sun H, Yeh W, Hsu N, Louie P (1995) Generalized network algorithm for water-supply-system optimization. J Water Resour Plan Manag 121:392–398 es_ES
dc.relation.references Wurbs R (1993) Reservoir-system simulation and optimization models. J Water Resour Plan Manag 119:455–472 es_ES
dc.relation.references Wurbs R (2005) Modeling river/reservoir system management, water allocation, and supply reliability. J Hydrol 300:100–113 es_ES
dc.relation.references Yamout G, El-Fadel M (2005) An optimization approach for multi-sectoral water supply management in the greater Beirut area. Water Resour Manag 19:791–812 es_ES
dc.relation.references Yates D, Sieber J, Purkey D, Hubert-Lee A (2005) WEAP21 – a demand-, priority-, and preference-driven water planning model. Part 1: model characteristics. Water Int 30:487–500 es_ES
dc.relation.references Zoltay V, Vogel R, Kirshen P, Westphal K (2010) Integrated watershed management modeling: generic optimization model applied to the Ipswich river basin. J Water Resour Plan Manag 136:566–575 es_ES


This item appears in the following Collection(s)

Show simple item record