- -

P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures

Mostrar el registro completo del ítem

Latorre Sánchez, M.; Primo Arnau, AM.; García Gómez, H. (2013). P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angewandte Chemie International Edition. 52(45):11813-11816. https://doi.org/10.1002/anie.201304505

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47180

Ficheros en el ítem

Metadatos del ítem

Título: P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures
Autor: Latorre Sánchez, Marcos Primo Arnau, Ana María García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The right dope: Phosphorus-doped graphene was obtained by the pyrolysis of natural alginate that contained H2PO4− at 900 °C. This material catalyzes the generation of H2 from a water/methanol mixture upon irradiation with ...[+]
Palabras clave: Graphene , Hydrogen , Phosphorus , Photocatalysis , Solar fuels
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 ) (eissn: 1521-3773 )
DOI: 10.1002/anie.201304505
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/anie.201304505
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial Support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) is gratefully acknowledged. M.L. and A.P. also thank the Spanish Ministry and the National Research Council for a ...[+]
Tipo: Artículo

References

Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1534. doi:10.1126/science.1158877

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Xiang, Q., Yu, J., & Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41(2), 782-796. doi:10.1039/c1cs15172j [+]
Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1534. doi:10.1126/science.1158877

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Xiang, Q., Yu, J., & Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41(2), 782-796. doi:10.1039/c1cs15172j

Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274

Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j

Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g

Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065

Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160

An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h

Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h

Liang, Y. T., & Hersam, M. C. (2012). Towards Rationally Designed Graphene-Based Materials and Devices. Macromolecular Chemistry and Physics, 213(10-11), 1091-1100. doi:10.1002/macp.201100572

Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361e

Vilatela, J. J., & Eder, D. (2012). Nanocarbon Composites and Hybrids in Sustainability: A Review. ChemSusChem, 5(3), 456-478. doi:10.1002/cssc.201100536

Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k

Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372

Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366

Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052

Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics Reports, 473(5-6), 51-87. doi:10.1016/j.physrep.2009.02.003

Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., & Dresselhaus, M. S. (2011). Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 60(3), 413-550. doi:10.1080/00018732.2011.582251

Liu, Z.-W., Peng, F., Wang, H.-J., Yu, H., Zheng, W.-X., & Yang, J. (2011). Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium. Angewandte Chemie, 123(14), 3315-3319. doi:10.1002/ange.201006768

Liu, Z.-W., Peng, F., Wang, H.-J., Yu, H., Zheng, W.-X., & Yang, J. (2011). Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium. Angewandte Chemie International Edition, 50(14), 3257-3261. doi:10.1002/anie.201006768

Han, J. C., Liu, A. P., Zhu, J. Q., Tan, M. L., & Wu, H. P. (2007). Effect of phosphorus content on structural properties of phosphorus incorporated tetrahedral amorphous carbon films. Applied Physics A, 88(2), 341-345. doi:10.1007/s00339-007-3938-4

Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., … Antonietti, M. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80. doi:10.1038/nmat2317

Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem