Mostrar el registro sencillo del ítem
dc.contributor.author | Bueno Alejo, Carlos Javier | es_ES |
dc.contributor.author | Villaescusa Alonso, Luis Angel | es_ES |
dc.contributor.author | García Bennet, Alfonso E. | es_ES |
dc.date.accessioned | 2015-02-17T11:50:24Z | |
dc.date.issued | 2014-11-03 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.uri | http://hdl.handle.net/10251/47190 | |
dc.description.abstract | There is large interest in replicating biological supramolecular structures in inorganic materials that are capable of mimicking biological properties. The use of 5- guanosine monophosphate in the presence of Na+ and K+ ions as a supramolecular template for the synthesis of well-ordered mesostructured materials is reported here. Mesostructured particles with the confined template exhibit high structural order at both meso- and atomic scales, with a lower structural symmetry in the columnar mesophase. Although a chiral space group can not be deduced from X-ray diffraction, analysis by electron microscopy and circular dichroism confirms a chiral stacking arrangement along the c-axis. Guanosine monophosphate based mesophases thus illustrate the possibility for specific molecular imprinting of mesoporous materials by genetic material and the potential for higher definition in molecular recognition. | es_ES |
dc.description.sponsorship | This work was supported by the Swedish Research Council (A.E.G.B.), and L.A.V. thanks the Spanish Government for financial support (project MAT2012-38429-C04) and D.E.L.I for help with the ICP/MS analysis. We are grateful to Prof. Sven Hovmoller (Stockholm University) for advice and helpful discussions regarding electron crystallography and CRISP. We are indebted to Dr. Isabel Correia (Technical University of Lisbon) for her help with circular dichroism measurements. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chirality | es_ES |
dc.subject | Electron microscopy | es_ES |
dc.subject | Hybrid material | es_ES |
dc.subject | Mesoporous materials | es_ES |
dc.subject | Self-assembly | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.title | Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/anie.201407005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Bueno Alejo, CJ.; Villaescusa Alonso, LA.; García Bennet, AE. (2014). Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica. Angewandte Chemie International Edition. 53(45):12106-12110. https://doi.org/10.1002/anie.201407005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/anie.201407005 | es_ES |
dc.description.upvformatpinicio | 12106 | es_ES |
dc.description.upvformatpfin | 12110 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 45 | es_ES |
dc.relation.senia | 276641 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Swedish Research Council | es_ES |
dc.description.references | Davis, J. T., & Spada, G. P. (2007). Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev., 36(2), 296-313. doi:10.1039/b600282j | es_ES |
dc.description.references | Guschlbauer, W., Chantot, J.-F., & Thiele, D. (1990). Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer DNA. Journal of Biomolecular Structure and Dynamics, 8(3), 491-511. doi:10.1080/07391102.1990.10507825 | es_ES |
dc.description.references | Monchaud, D., & Teulade-Fichou, M.-P. (2008). A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem., 6(4), 627-636. doi:10.1039/b714772b | es_ES |
dc.description.references | Mann, S. (2012). The Origins of Life: Old Problems, New Chemistries. Angewandte Chemie International Edition, 52(1), 155-162. doi:10.1002/anie.201204968 | es_ES |
dc.description.references | Mann, S. (2012). Wie entsteht Leben: Ein altes Problem gebiert neue Chemie. Angewandte Chemie, 125(1), 166-173. doi:10.1002/ange.201204968 | es_ES |
dc.description.references | Liu, B., Han, L., & Che, S. (2011). Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angewandte Chemie International Edition, 51(4), 923-927. doi:10.1002/anie.201105445 | es_ES |
dc.description.references | Liu, B., Han, L., & Che, S. (2011). Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angewandte Chemie, 124(4), 947-951. doi:10.1002/ange.201105445 | es_ES |
dc.description.references | Hilgenbrink, A. R., & Low, P. S. (2005). Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. Journal of Pharmaceutical Sciences, 94(10), 2135-2146. doi:10.1002/jps.20457 | es_ES |
dc.description.references | Wu, G., & Kwan, I. C. M. (2009). Helical Structure of Disodium 5′-Guanosine Monophosphate Self-Assembly in Neutral Solution. Journal of the American Chemical Society, 131(9), 3180-3182. doi:10.1021/ja809258y | es_ES |
dc.description.references | Pinnavaia, T. J., Miles, H. T., & Becker, E. D. (1975). Self-assembled 5’-guanosine monophosphate, nuclear magnetic resonance evidence for a regular, ordered structure and slow chemical exchange. Journal of the American Chemical Society, 97(24), 7198-7200. doi:10.1021/ja00857a059 | es_ES |
dc.description.references | Davis, J. T. (2004). G-Quartets 40 Years Later: From 5′-GMP to Molecular Biology and Supramolecular Chemistry. Angewandte Chemie International Edition, 43(6), 668-698. doi:10.1002/anie.200300589 | es_ES |
dc.description.references | Davis, J. T. (2004). 40 Jahre G-Quartetts: von 5′-GMP zur Molekularbiologie und Supramolekularen Chemie. Angewandte Chemie, 116(6), 684-716. doi:10.1002/ange.200300589 | es_ES |
dc.description.references | Che, S., Garcia-Bennett, A. E., Yokoi, T., Sakamoto, K., Kunieda, H., Terasaki, O., & Tatsumi, T. (2003). A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials, 2(12), 801-805. doi:10.1038/nmat1022 | es_ES |
dc.description.references | Garcia-Bennett, A. E., Kupferschmidt, N., Sakamoto, Y., Che, S., & Terasaki, O. (2005). Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie International Edition, 44(33), 5317-5322. doi:10.1002/anie.200500113 | es_ES |
dc.description.references | Garcia-Bennett, A. E., Kupferschmidt, N., Sakamoto, Y., Che, S., & Terasaki, O. (2005). Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie, 117(33), 5451-5456. doi:10.1002/ange.200500113 | es_ES |
dc.description.references | Atluri, R., Hedin, N., & Garcia-Bennett, A. E. (2009). Nonsurfactant Supramolecular Synthesis of Ordered Mesoporous Silica. Journal of the American Chemical Society, 131(9), 3189-3191. doi:10.1021/ja8096477 | es_ES |
dc.description.references | Atluri, R., Iqbal, M. N., Bacsik, Z., Hedin, N., Villaescusa, L. A., & Garcia-Bennett, A. E. (2013). Self-Assembly Mechanism of Folate-Templated Mesoporous Silica. Langmuir, 29(38), 12003-12012. doi:10.1021/la401532j | es_ES |
dc.description.references | Qiu, H., Xie, J., & Che, S. (2011). Formation of chiral mesostructured porphyrin–silica hybrids. Chemical Communications, 47(9), 2607. doi:10.1039/c0cc05078d | es_ES |
dc.description.references | Sauer, J., Marlow, F., & Schüth, F. (2001). Simulation of powder diffraction patterns of modified ordered mesoporous materials. Physical Chemistry Chemical Physics, 3(24), Unassigned. doi:10.1039/b108435f | es_ES |
dc.description.references | Kanie, K., Nishii, M., Yasuda, T., Taki, T., Ujiie, S., & Kato, T. (2001). Journal of Materials Chemistry, 11(11), 2875-2886. doi:10.1039/b103168f | es_ES |
dc.description.references | Mariani, P., Spinozzi, F., Federiconi, F., Amenitsch, H., Spindler, L., & Drevensek-Olenik, I. (2009). Small Angle X-ray Scattering Analysis of Deoxyguanosine 5′-Monophosphate Self-Assembing in Solution: Nucleation and Growth of G-Quadruplexes. The Journal of Physical Chemistry B, 113(22), 7934-7944. doi:10.1021/jp809734p | es_ES |
dc.description.references | Khaled, M. A., & Krumdieck, C. L. (1985). Association of folate molecules as determined by proton NMR: Implications on enzyme binding. Biochemical and Biophysical Research Communications, 130(3), 1273-1280. doi:10.1016/0006-291x(85)91752-8 | es_ES |
dc.description.references | Mergny, J.-L. (2005). Kinetics of tetramolecular quadruplexes. Nucleic Acids Research, 33(1), 81-94. doi:10.1093/nar/gki148 | es_ES |
dc.description.references | Wan, W., Hovmöller, S., & Zou, X. (2012). Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy, 115, 50-60. doi:10.1016/j.ultramic.2012.01.013 | es_ES |
dc.description.references | Dorset, D. ., McCourt, M. ., Kopp, S., Schumacher, M., Okihara, T., & Lotz, B. (1998). Isotactic polypropylene, β-phase: a study in frustration. Polymer, 39(25), 6331-6337. doi:10.1016/s0032-3861(97)10160-4 | es_ES |
dc.description.references | Weber, T., Boysen, H., & Frey, F. (2000). Longitudinal positional ordering ofn-alkane molecules in urea inclusion compounds. Acta Crystallographica Section B Structural Science, 56(1), 132-141. doi:10.1107/s0108768199010617 | es_ES |
dc.description.references | Welberry, T. R., & Mayo, S. C. (1996). Diffuse X-ray Scattering and Monte-Carlo Study of Guest–Host Interactions in Urea Inclusion Compounds. Journal of Applied Crystallography, 29(4), 353-364. doi:10.1107/s0021889895017158 | es_ES |
dc.description.references | Qiu, H., Sakamoto, Y., Terasaki, O., & Che, S. (2008). A 2D-Rectangularp2gg Silica Mesoporous Crystal with Elliptical Mesopores: An Intermediate Phase of Chiral and Lamellar Mesostructures. Advanced Materials, 20(3), 425-429. doi:10.1002/adma.200700809 | es_ES |
dc.description.references | Panda, M., & Walmsley, J. A. (2011). Circular Dichroism Study of Supramolecular Assemblies of Guanosine 5′-Monophosphate. The Journal of Physical Chemistry B, 115(19), 6377-6383. doi:10.1021/jp201630g | es_ES |
dc.description.references | Arnal-Hérault, C., Banu, A., Barboiu, M., Michau, M., & van der Lee, A. (2007). Amplification and Transcription of the Dynamic Supramolecular Chirality of the Guanine Quadruplex. Angewandte Chemie International Edition, 46(23), 4268-4272. doi:10.1002/anie.200700787 | es_ES |
dc.description.references | Arnal-Hérault, C., Banu, A., Barboiu, M., Michau, M., & van der Lee, A. (2007). Amplification and Transcription of the Dynamic Supramolecular Chirality of the Guanine Quadruplex. Angewandte Chemie, 119(23), 4346-4350. doi:10.1002/ange.200700787 | es_ES |