- -

Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bueno Alejo, Carlos Javier es_ES
dc.contributor.author Villaescusa Alonso, Luis Angel es_ES
dc.contributor.author García Bennet, Alfonso E. es_ES
dc.date.accessioned 2015-02-17T11:50:24Z
dc.date.issued 2014-11-03
dc.identifier.issn 1433-7851
dc.identifier.issn 1521-3773
dc.identifier.uri http://hdl.handle.net/10251/47190
dc.description.abstract There is large interest in replicating biological supramolecular structures in inorganic materials that are capable of mimicking biological properties. The use of 5- guanosine monophosphate in the presence of Na+ and K+ ions as a supramolecular template for the synthesis of well-ordered mesostructured materials is reported here. Mesostructured particles with the confined template exhibit high structural order at both meso- and atomic scales, with a lower structural symmetry in the columnar mesophase. Although a chiral space group can not be deduced from X-ray diffraction, analysis by electron microscopy and circular dichroism confirms a chiral stacking arrangement along the c-axis. Guanosine monophosphate based mesophases thus illustrate the possibility for specific molecular imprinting of mesoporous materials by genetic material and the potential for higher definition in molecular recognition. es_ES
dc.description.sponsorship This work was supported by the Swedish Research Council (A.E.G.B.), and L.A.V. thanks the Spanish Government for financial support (project MAT2012-38429-C04) and D.E.L.I for help with the ICP/MS analysis. We are grateful to Prof. Sven Hovmoller (Stockholm University) for advice and helpful discussions regarding electron crystallography and CRISP. We are indebted to Dr. Isabel Correia (Technical University of Lisbon) for her help with circular dichroism measurements. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chirality es_ES
dc.subject Electron microscopy es_ES
dc.subject Hybrid material es_ES
dc.subject Mesoporous materials es_ES
dc.subject Self-assembly es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/anie.201407005
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Bueno Alejo, CJ.; Villaescusa Alonso, LA.; García Bennet, AE. (2014). Supramolecular Transcription of Guanosine Monophosphate into Mesostructured Silica. Angewandte Chemie International Edition. 53(45):12106-12110. https://doi.org/10.1002/anie.201407005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/anie.201407005 es_ES
dc.description.upvformatpinicio 12106 es_ES
dc.description.upvformatpfin 12110 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 45 es_ES
dc.relation.senia 276641
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.description.references Davis, J. T., & Spada, G. P. (2007). Supramolecular architectures generated by self-assembly of guanosine derivatives. Chem. Soc. Rev., 36(2), 296-313. doi:10.1039/b600282j es_ES
dc.description.references Guschlbauer, W., Chantot, J.-F., & Thiele, D. (1990). Four-Stranded Nucleic Acid Structures 25 Years Later: From Guanosine Gels to Telomer DNA. Journal of Biomolecular Structure and Dynamics, 8(3), 491-511. doi:10.1080/07391102.1990.10507825 es_ES
dc.description.references Monchaud, D., & Teulade-Fichou, M.-P. (2008). A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem., 6(4), 627-636. doi:10.1039/b714772b es_ES
dc.description.references Mann, S. (2012). The Origins of Life: Old Problems, New Chemistries. Angewandte Chemie International Edition, 52(1), 155-162. doi:10.1002/anie.201204968 es_ES
dc.description.references Mann, S. (2012). Wie entsteht Leben: Ein altes Problem gebiert neue Chemie. Angewandte Chemie, 125(1), 166-173. doi:10.1002/ange.201204968 es_ES
dc.description.references Liu, B., Han, L., & Che, S. (2011). Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angewandte Chemie International Edition, 51(4), 923-927. doi:10.1002/anie.201105445 es_ES
dc.description.references Liu, B., Han, L., & Che, S. (2011). Formation of Enantiomeric Impeller-Like Helical Architectures by DNA Self-Assembly and Silica Mineralization. Angewandte Chemie, 124(4), 947-951. doi:10.1002/ange.201105445 es_ES
dc.description.references Hilgenbrink, A. R., & Low, P. S. (2005). Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. Journal of Pharmaceutical Sciences, 94(10), 2135-2146. doi:10.1002/jps.20457 es_ES
dc.description.references Wu, G., & Kwan, I. C. M. (2009). Helical Structure of Disodium 5′-Guanosine Monophosphate Self-Assembly in Neutral Solution. Journal of the American Chemical Society, 131(9), 3180-3182. doi:10.1021/ja809258y es_ES
dc.description.references Pinnavaia, T. J., Miles, H. T., & Becker, E. D. (1975). Self-assembled 5’-guanosine monophosphate, nuclear magnetic resonance evidence for a regular, ordered structure and slow chemical exchange. Journal of the American Chemical Society, 97(24), 7198-7200. doi:10.1021/ja00857a059 es_ES
dc.description.references Davis, J. T. (2004). G-Quartets 40 Years Later: From 5′-GMP to Molecular Biology and Supramolecular Chemistry. Angewandte Chemie International Edition, 43(6), 668-698. doi:10.1002/anie.200300589 es_ES
dc.description.references Davis, J. T. (2004). 40 Jahre G-Quartetts: von 5′-GMP zur Molekularbiologie und Supramolekularen Chemie. Angewandte Chemie, 116(6), 684-716. doi:10.1002/ange.200300589 es_ES
dc.description.references Che, S., Garcia-Bennett, A. E., Yokoi, T., Sakamoto, K., Kunieda, H., Terasaki, O., & Tatsumi, T. (2003). A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Materials, 2(12), 801-805. doi:10.1038/nmat1022 es_ES
dc.description.references Garcia-Bennett, A. E., Kupferschmidt, N., Sakamoto, Y., Che, S., & Terasaki, O. (2005). Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie International Edition, 44(33), 5317-5322. doi:10.1002/anie.200500113 es_ES
dc.description.references Garcia-Bennett, A. E., Kupferschmidt, N., Sakamoto, Y., Che, S., & Terasaki, O. (2005). Synthesis of Mesocage Structures by Kinetic Control of Self-Assembly in Anionic Surfactants. Angewandte Chemie, 117(33), 5451-5456. doi:10.1002/ange.200500113 es_ES
dc.description.references Atluri, R., Hedin, N., & Garcia-Bennett, A. E. (2009). Nonsurfactant Supramolecular Synthesis of Ordered Mesoporous Silica. Journal of the American Chemical Society, 131(9), 3189-3191. doi:10.1021/ja8096477 es_ES
dc.description.references Atluri, R., Iqbal, M. N., Bacsik, Z., Hedin, N., Villaescusa, L. A., & Garcia-Bennett, A. E. (2013). Self-Assembly Mechanism of Folate-Templated Mesoporous Silica. Langmuir, 29(38), 12003-12012. doi:10.1021/la401532j es_ES
dc.description.references Qiu, H., Xie, J., & Che, S. (2011). Formation of chiral mesostructured porphyrin–silica hybrids. Chemical Communications, 47(9), 2607. doi:10.1039/c0cc05078d es_ES
dc.description.references Sauer, J., Marlow, F., & Schüth, F. (2001). Simulation of powder diffraction patterns of modified ordered mesoporous materials. Physical Chemistry Chemical Physics, 3(24), Unassigned. doi:10.1039/b108435f es_ES
dc.description.references Kanie, K., Nishii, M., Yasuda, T., Taki, T., Ujiie, S., & Kato, T. (2001). Journal of Materials Chemistry, 11(11), 2875-2886. doi:10.1039/b103168f es_ES
dc.description.references Mariani, P., Spinozzi, F., Federiconi, F., Amenitsch, H., Spindler, L., & Drevensek-Olenik, I. (2009). Small Angle X-ray Scattering Analysis of Deoxyguanosine 5′-Monophosphate Self-Assembing in Solution: Nucleation and Growth of G-Quadruplexes. The Journal of Physical Chemistry B, 113(22), 7934-7944. doi:10.1021/jp809734p es_ES
dc.description.references Khaled, M. A., & Krumdieck, C. L. (1985). Association of folate molecules as determined by proton NMR: Implications on enzyme binding. Biochemical and Biophysical Research Communications, 130(3), 1273-1280. doi:10.1016/0006-291x(85)91752-8 es_ES
dc.description.references Mergny, J.-L. (2005). Kinetics of tetramolecular quadruplexes. Nucleic Acids Research, 33(1), 81-94. doi:10.1093/nar/gki148 es_ES
dc.description.references Wan, W., Hovmöller, S., & Zou, X. (2012). Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy, 115, 50-60. doi:10.1016/j.ultramic.2012.01.013 es_ES
dc.description.references Dorset, D. ., McCourt, M. ., Kopp, S., Schumacher, M., Okihara, T., & Lotz, B. (1998). Isotactic polypropylene, β-phase: a study in frustration. Polymer, 39(25), 6331-6337. doi:10.1016/s0032-3861(97)10160-4 es_ES
dc.description.references Weber, T., Boysen, H., & Frey, F. (2000). Longitudinal positional ordering ofn-alkane molecules in urea inclusion compounds. Acta Crystallographica Section B Structural Science, 56(1), 132-141. doi:10.1107/s0108768199010617 es_ES
dc.description.references Welberry, T. R., & Mayo, S. C. (1996). Diffuse X-ray Scattering and Monte-Carlo Study of Guest–Host Interactions in Urea Inclusion Compounds. Journal of Applied Crystallography, 29(4), 353-364. doi:10.1107/s0021889895017158 es_ES
dc.description.references Qiu, H., Sakamoto, Y., Terasaki, O., & Che, S. (2008). A 2D-Rectangularp2gg Silica Mesoporous Crystal with Elliptical Mesopores: An Intermediate Phase of Chiral and Lamellar Mesostructures. Advanced Materials, 20(3), 425-429. doi:10.1002/adma.200700809 es_ES
dc.description.references Panda, M., & Walmsley, J. A. (2011). Circular Dichroism Study of Supramolecular Assemblies of Guanosine 5′-Monophosphate. The Journal of Physical Chemistry B, 115(19), 6377-6383. doi:10.1021/jp201630g es_ES
dc.description.references Arnal-Hérault, C., Banu, A., Barboiu, M., Michau, M., & van der Lee, A. (2007). Amplification and Transcription of the Dynamic Supramolecular Chirality of the Guanine Quadruplex. Angewandte Chemie International Edition, 46(23), 4268-4272. doi:10.1002/anie.200700787 es_ES
dc.description.references Arnal-Hérault, C., Banu, A., Barboiu, M., Michau, M., & van der Lee, A. (2007). Amplification and Transcription of the Dynamic Supramolecular Chirality of the Guanine Quadruplex. Angewandte Chemie, 119(23), 4346-4350. doi:10.1002/ange.200700787 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem