Mostrar el registro sencillo del ítem
dc.contributor.author | Juárez Varón, David | es_ES |
dc.contributor.author | García Sanoguera, David | es_ES |
dc.contributor.author | Ferrándiz Bou, Santiago | es_ES |
dc.contributor.author | Peydro, M. A. | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2015-02-23T11:54:32Z | |
dc.date.available | 2015-02-23T11:54:32Z | |
dc.date.issued | 2013-07-13 | |
dc.identifier.issn | 0360-2559 | |
dc.identifier.uri | http://hdl.handle.net/10251/47379 | |
dc.description | "This is an Accepted Manuscript of an article published by Taylor & Francis in Polymer-Plastics Technology and Engineering on JUL 15 2013, available online:www.tandfonline.com/doi/full/10.1080/03602559.2013.763363" | es_ES |
dc.description.abstract | In this work, a system of compatible blends based on two commercial grades of a thermoplastic elastomer, styrene-ethylene/ butylene-styrene (SEBS), with extreme Shore A hardness values (5 and 90), was studied in order to obtain a range of different performance blends for orthopedic and childcare applications, where usually liquid silicone rubber is used. Mechanical properties of different blends were obtained, and Equivalent Box Model (EBM) was used for the prediction of the mechanical behavior. The results show good agreement between the theoretical model and experimental data of new blends of SEBS. | es_ES |
dc.description.sponsorship | The authors thank "Ministerio de Ciencia y Tecnologia", Ref: DPI2007-66849-C02-02 and Generalitat Valenciana FPA/2010/027 for financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | Polymer-Plastics Technology and Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blend | es_ES |
dc.subject | EBM | es_ES |
dc.subject | Mechanical characterization | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Orthopedics | es_ES |
dc.subject | SEBS | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Study, mechanical characterization and mathematical modeling of compatible SEBS blends for industrial applications in orthopedics and childcare | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/03602559.2013.763363 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66849-C02-02/ES/INVESTIGACION DE LOS MECANISMOS DE ACTUACION DE TRATAMIENTOS SUPERFICIALES, PARA LA CUANTIFICACION DE LA HIDROFILIDAD Y DURABILIDAD, APLICADOS SOBRE MATERIALES TEXTILES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//FPA%2F2010%2F027/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Juárez Varón, D.; García Sanoguera, D.; Ferrándiz Bou, S.; Peydro, MA.; Balart Gimeno, RA. (2013). Study, mechanical characterization and mathematical modeling of compatible SEBS blends for industrial applications in orthopedics and childcare. Polymer-Plastics Technology and Engineering. 52(9):862-868. https://doi.org/10.1080/03602559.2013.763363 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/03602559.2013.763363 | es_ES |
dc.description.upvformatpinicio | 862 | es_ES |
dc.description.upvformatpfin | 868 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 253184 | |
dc.identifier.eissn | 1525-6111 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Xiao, D., Mo, Y., & Choi, M. M. F. (2003). A hand-held optical sensor for dissolved oxygen measurement. Measurement Science and Technology, 14(6), 862-867. doi:10.1088/0957-0233/14/6/323 | es_ES |
dc.description.references | Sagripanti, J.-L., & Bonifacino, A. (1996). Comparative sporicidal effect of liquid chemical germicides on three medical devices contaminated with spores of Bacillus subtilis. American Journal of Infection Control, 24(5), 364-371. doi:10.1016/s0196-6553(96)90024-3 | es_ES |
dc.description.references | Mahomed, A., Hukins, D. W. L., & Kukureka, S. N. (2010). Swelling of medical grade silicones in liquids and calculation of their cross-link densities. Medical Engineering & Physics, 32(4), 298-303. doi:10.1016/j.medengphy.2009.12.004 | es_ES |
dc.description.references | Kim, E.-G., Oh, J., & Choi, B. (2006). A study on the development of a continuous peristaltic micropump using magnetic fluids. Sensors and Actuators A: Physical, 128(1), 43-51. doi:10.1016/j.sna.2006.01.021 | es_ES |
dc.description.references | Barbaroux, M., Stalet, G., Regnier, G., & Trotignon, J.-P. (1997). Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design. International Polymer Processing, 12(2), 174-181. doi:10.3139/217.970174 | es_ES |
dc.description.references | Barbaroux, M., Régnier, G., & Verdu, J. (2000). Effect of cavity pressure on crosslink density of injection moulded silicone rubber. Plastics, Rubber and Composites, 29(5), 229-234. doi:10.1179/146580100101541003 | es_ES |
dc.description.references | Lopez, L. M., Cosgrove, A. B., Hernandez-Ortiz, J. P., & Osswald, T. A. (2007). Modeling the vulcanization reaction of silicone rubber. Polymer Engineering & Science, 47(5), 675-683. doi:10.1002/pen.20698 | es_ES |
dc.description.references | Bose, S., Mukherjee, M., & Das, C. K. (2009). Silicone Rubber Compatibilized Syndiotactic Polystyrene and Thermotropic Liquid Crystalline Polymer (Vectra A950) Blend. Polymer-Plastics Technology and Engineering, 48(2), 158-163. doi:10.1080/03602550802577346 | es_ES |
dc.description.references | Vijayalakshmi, N., Reddy, M. M., Naidu, S. V., Ramanjappa, T., & Appalanaidu, P. (2008). Immiscibility of Silicone Rubber and Polymethylmethacrylate. International Journal of Polymeric Materials and Polymeric Biomaterials, 57(7), 709-716. doi:10.1080/00914030801891302 | es_ES |
dc.description.references | Wang, J., Feng, L., Chao, X., & Feng, Y. (2012). Performance of Room Temperature Vulcanized (RTV) Silicone Rubber-Based Composites: DBDPO/RTV and DBDPE/Sb2O3/RTV. Polymer-Plastics Technology and Engineering, 51(12), 1245-1250. doi:10.1080/03602559.2012.699130 | es_ES |
dc.description.references | Wu, C., Li, W., Gao, D., & Jia, M. (2009). Study of Resistance of Silicone Resin to Heat and Irradiation. Polymer-Plastics Technology and Engineering, 48(10), 1094-1100. doi:10.1080/03602550903147213 | es_ES |
dc.description.references | Ahmad, Z., Kumar, K. D., Saroop, M., Preschilla, N., Biswas, A., Bellare, J. R., & Bhowmick, A. K. (2009). Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: Structure-property correlations. Polymer Engineering & Science, 50(2), 331-341. doi:10.1002/pen.21540 | es_ES |
dc.description.references | Barbe, A., Bökamp, K., Kummerlöwe, C., Sollmann, H., Vennemann, N., & Vinzelberg, S. (2005). Investigation of modified SEBS-based thermoplastic elastomers by temperature scanning stress relaxation measurements. Polymer Engineering & Science, 45(11), 1498-1507. doi:10.1002/pen.20427 | es_ES |
dc.description.references | Masoomi, M., Katbab, A. A., & Nazockdast, H. (2006). Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs). Applied Composite Materials, 13(5), 305-319. doi:10.1007/s10443-006-9018-7 | es_ES |
dc.description.references | Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., Schmidt, S. P., … Lovejoy, K. (2010). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials, 31(9), 2477-2488. doi:10.1016/j.biomaterials.2009.12.003 | es_ES |
dc.description.references | Reddy, S., Arzt, E., & del Campo, A. (2007). Bioinspired Surfaces with Switchable Adhesion. Advanced Materials, 19(22), 3833-3837. doi:10.1002/adma.200700733 | es_ES |
dc.description.references | Xu, J., Zhang, A., Zhou, T., Cao, X., & Xie, Z. (2007). A study on thermal oxidation mechanism of styrene–butadiene–styrene block copolymer (SBS). Polymer Degradation and Stability, 92(9), 1682-1691. doi:10.1016/j.polymdegradstab.2007.06.008 | es_ES |
dc.description.references | Chow, W. S., & Neoh, S. S. (2009). Mechanical, Morphological and Thermal Properties of Polycarbonate/SEBS-G-MA/Montmorillonite Nanocomposites. Polymer-Plastics Technology and Engineering, 49(1), 62-68. doi:10.1080/03602550903283034 | es_ES |
dc.description.references | Hong, X., Nie, G., Lin, Z., & Rong, J. (2012). Structure and Properties of PPO/PP Blends Compatibilized by Triblock Copolymer SEBS and SEPS. Polymer-Plastics Technology and Engineering, 51(10), 971-976. doi:10.1080/03602559.2012.671422 | es_ES |
dc.description.references | Savadekar, N. R., & Mhaske, S. T. (2010). The Effect of Vulcanized Thermoplastics and SEBS on the Impact Strength of PPT. Polymer-Plastics Technology and Engineering, 49(15), 1499-1505. doi:10.1080/03602559.2010.496426 | es_ES |
dc.description.references | Taşdemir, M., Ersoy, S., & Uluğ, E. (2012). Effects of HIPS on the Sound Absorption and Impedance Ratio of SEBS/HIPS/CaCO3Polymer Composites. Polymer-Plastics Technology and Engineering, 51(9), 954-958. doi:10.1080/03602559.2012.680563 | es_ES |
dc.description.references | Taşdemir, M., & Uluğ, E. (2012). Mechanical, Morphological and Thermal Properties of SEBS, SIS and SBR-type Thermoplastic Elastomers Toughened High Impact Polystyrene. Polymer-Plastics Technology and Engineering, 51(2), 164-169. doi:10.1080/03602559.2011.618169 | es_ES |
dc.description.references | Stephenson, M. J., & Dargush, G. F. (2002). Development of a curvilinear viscoelastic constitutive relationship for time dependent materials. Part B: Example problems. Polymer Engineering & Science, 42(3), 529-538. doi:10.1002/pen.10969 | es_ES |
dc.description.references | Stephenson, M. J., & Dargush, G. F. (2002). Development of a curvilinear viscoelastic constitutive relationship for time dependent materials. Part A: Theoretical discussion. Polymer Engineering & Science, 42(3), 519-528. doi:10.1002/pen.10968 | es_ES |
dc.description.references | Hernández, R., Peña, J. J., Irusta, L., & Santamarı́a, A. (2000). The effect of a miscible and an immiscible polymeric modifier on the mechanical and rheological properties of PVC. European Polymer Journal, 36(5), 1011-1025. doi:10.1016/s0014-3057(99)00146-9 | es_ES |
dc.description.references | Vaccaro, E., DiBenedetto, A. T., & Huang, S. J. (1997). Yield strength of low-density polyethylene-polypropylene blends. Journal of Applied Polymer Science, 63(3), 275-281. doi:10.1002/(sici)1097-4628(19970118)63:3<275::aid-app1>3.0.co;2-k | es_ES |
dc.description.references | Kolařk, J. (1998). Simultaneous prediction of the modulus, tensile strength and gas permeability of binary polymer blends. European Polymer Journal, 34(5-6), 585-590. doi:10.1016/s0014-3057(97)00176-6 | es_ES |
dc.description.references | Robeson, L. M., & Berner, R. A. (2001). Mechanical properties of emulsion polymer blends. Journal of Polymer Science Part B: Polymer Physics, 39(11), 1093-1106. doi:10.1002/polb.1086 | es_ES |