- -

Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pascual, J. es_ES
dc.contributor.author Peris, F. es_ES
dc.contributor.author Boronat Vitoria, Teodomiro es_ES
dc.contributor.author Fenollar Gimeno, Octavio Ángel es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2015-02-24T12:01:09Z
dc.date.issued 2012-04
dc.identifier.issn 0032-3888
dc.identifier.uri http://hdl.handle.net/10251/47426
dc.description.abstract Carbon nanotubes (CNTs) have been added to polypropylene (PP) matrix to improve the overall performance of composites. The mixing process has been carried out by melt compounding using a twin screw co-rotating extruder with different CNTs amounts in the 0.5-10 wt% from a concentrated PP-CNTs masterbatch (20 wt% CNTs). Results show a remarkable increase in tensile strength and elastic modulus while a decrease in elongation at break is detected. With regard to thermal behavior, a remarkable increase in thermal stability at high temperatures (decomposition process studied by thermogravimetric analysis) is obtained as the CNTs amount increases. In addition to this improvement, a noticeable increase in thermal stability at medium temperatures (degradation onset determined by differential scanning calorimetry, DSC) is also observed. In a similar way, other property related to thermal and mechanical performance, such as Vicat softening temperature (VST) is improved with CNTs content. The optimum balance between cost and properties seems to be in the 13 wt% range. POLYM. ENG. SCI., 52:733-740, 2011. (C) 2011 Society of Plastics Engineers es_ES
dc.description.sponsorship Contract grant sponsor: "Ministerio de Ciencia e Innovacion'' cofinanced by FEDER funds (European Union); contract grant number: IPT-310000-2010-37; contract grant sponsor: Conselleria d'Industria, Comerc i Turisme-IMPIVA cofinanced by FEDER funds (European Union); contract grant number: IMIDIC/2009/109. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Polymer Engineering and Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanotube/polypropylene composites es_ES
dc.subject Electrical-conductivity es_ES
dc.subject Isotactic polypropylene es_ES
dc.subject Polymer composites es_ES
dc.subject Polyamide 6 es_ES
dc.subject Nanocomposites es_ES
dc.subject Functionalization es_ES
dc.subject Nanoparticles es_ES
dc.subject Resins es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/pen.22128
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IMIDIC%2F2009%2F109/ES/MODIFICACIÓN DE LAS PROPIEDADES MECÁNICAS DE HILOS MULTIFILAMENTOS PARCIALMENTE ORIENTADOS MEDIANTE/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Pascual, J.; Peris, F.; Boronat Vitoria, T.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2012). Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polymer Engineering and Science. 52(4):733-740. https://doi.org/10.1002/pen.22128 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/pen.22128/pdf es_ES
dc.description.upvformatpinicio 733 es_ES
dc.description.upvformatpfin 740 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 217171
dc.identifier.eissn 1548-2634
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Burris, D. L., Boesl, B., Bourne, G. R., & Sawyer, W. G. (2007). Polymeric Nanocomposites for Tribological Applications. Macromolecular Materials and Engineering, 292(4), 387-402. doi:10.1002/mame.200600416 es_ES
dc.description.references Kim, J. Y., Kim, D. K., & Kim, S. H. (2009). Thermal decomposition behavior of poly(ethylene 2,6-naphthalate)/silica nanocomposites. Polymer Composites, 30(12), 1779-1787. doi:10.1002/pc.20749 es_ES
dc.description.references Mahrholz, T., Stängle, J., & Sinapius, M. (2009). Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Composites Part A: Applied Science and Manufacturing, 40(3), 235-243. doi:10.1016/j.compositesa.2008.11.008 es_ES
dc.description.references MARYNIAK, M., GUSKOS, N., TYPEK, J., PETRIDIS, D., SZYMCZYK, A., GUSKOS, A., … KWIATKOWSKA, M. (2009). Thermal characterization of polymer composites with nanocrystalline maghemite. Polimery, 54(07/08), 546-551. doi:10.14314/polimery.2009.546 es_ES
dc.description.references Mavinakuli, P., Wei, S., Wang, Q., Karki, A. B., Dhage, S., Wang, Z., … Guo, Z. (2010). Polypyrrole/Silicon Carbide Nanocomposites with Tunable Electrical Conductivity. The Journal of Physical Chemistry C, 114(9), 3874-3882. doi:10.1021/jp911766y es_ES
dc.description.references Ruan, W. H., Mai, Y. L., Wang, X. H., Rong, M. Z., & Zhang, M. Q. (2007). Effects of processing conditions on properties of nano-SiO2/polypropylene composites fabricated by pre-drawing technique. Composites Science and Technology, 67(13), 2747-2756. doi:10.1016/j.compscitech.2007.02.004 es_ES
dc.description.references Cheng, H. K. F., Sahoo, N. G., Pan, Y., Li, L., Chan, S. H., Zhao, J., & Chen, G. (2010). Complementary effects of multiwalled carbon nanotubes and conductive carbon black on polyamide 6. Journal of Polymer Science Part B: Polymer Physics, 48(11), 1203-1212. doi:10.1002/polb.22010 es_ES
dc.description.references Díez-Pascual, A. M., Naffakh, M., Gómez, M. A., Marco, C., Ellis, G., González-Domínguez, J. M., … Ashrafi, B. (2009). The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 20(31), 315707. doi:10.1088/0957-4484/20/31/315707 es_ES
dc.description.references Guadagno, L., Naddeo, C., Raimondo, M., Gorrasi, G., & Vittoria, V. (2010). Effect of carbon nanotubes on the photo-oxidative durability of syndiotactic polypropylene. Polymer Degradation and Stability, 95(9), 1614-1626. doi:10.1016/j.polymdegradstab.2010.05.030 es_ES
dc.description.references Hubert, P., Ashrafi, B., Adhikari, K., Meredith, J., Vengallatore, S., Guan, J., & Simard, B. (2009). Synthesis and characterization of carbon nanotube-reinforced epoxy: Correlation between viscosity and elastic modulus. Composites Science and Technology, 69(14), 2274-2280. doi:10.1016/j.compscitech.2009.04.023 es_ES
dc.description.references O’Connor, I., Hayden, H., O’Connor, S., Coleman, J. N., & Gun’ko, Y. K. (2009). Polymer Reinforcement with Kevlar-Coated Carbon Nanotubes. The Journal of Physical Chemistry C, 113(47), 20184-20192. doi:10.1021/jp9046566 es_ES
dc.description.references Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35(7), 837-867. doi:10.1016/j.progpolymsci.2010.03.002 es_ES
dc.description.references Wang, W.-Y., Luo, G.-H., Wei, F., & Luo, J. (2009). Electrical conductivity and thermal properties of acrylonitrile-butadiene-styrene filled with multiwall carbon nanotubes. Polymer Engineering & Science, 49(11), 2144-2149. doi:10.1002/pen.21454 es_ES
dc.description.references Ansari, M. N. M., Ismail, H., & Zein, S. H. S. (2008). Effect of Multi-walled Carbon Nanotubes on Mechanical Properties of Feldspar Filled Polypropylene Composites. Journal of Reinforced Plastics and Composites, 28(20), 2473-2485. doi:10.1177/0731684408092377 es_ES
dc.description.references Cheng, H. K. F., Sahoo, N. G., Khin, T. H., Li, L., Chan, S. H., Zhao, J., & Juay, Y. K. (2010). The Role of Functionalized Carbon Nanotubes in a PA6/LCP Blend. Journal of Nanoscience and Nanotechnology, 10(8), 5242-5251. doi:10.1166/jnn.2010.2415 es_ES
dc.description.references Giraldo, L. F., López, B. L., & Brostow, W. (2009). Effect of the type of carbon nanotubes on tribological properties of polyamide 6. Polymer Engineering & Science, 49(5), 896-902. doi:10.1002/pen.21386 es_ES
dc.description.references Grady, B. P., Arthur, D. J., & Ferguson, J. (2009). Single-walled carbon nanotube/ultrahigh-molecular-weight polyethylene composites with percolation at low nanotube contents. Polymer Engineering & Science, 49(12), 2440-2446. doi:10.1002/pen.21494 es_ES
dc.description.references Liu, S.-P., Hwang, S., Yeh, J.-M., & Pan, K.-W. (2010). Enhancement of surface and bulk mechanical properties of polycarbonate through the incorporation of raw MWNTs — Using the twin-screw extruder mixed technique. International Communications in Heat and Mass Transfer, 37(7), 809-814. doi:10.1016/j.icheatmasstransfer.2010.05.019 es_ES
dc.description.references Sengupta, R., Ganguly, A., Sabharwal, S., Chaki, T. K., & Bhowmick, A. K. (2007). MWCNT reinforced Polyamide-6,6 films: preparation, characterization and properties. Journal of Materials Science, 42(3), 923-934. doi:10.1007/s10853-006-0011-1 es_ES
dc.description.references Bangarusampath, D. S., Ruckdäschel, H., Altstädt, V., Sandler, J. K. W., Garray, D., & Shaffer, M. S. P. (2009). Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer, 50(24), 5803-5811. doi:10.1016/j.polymer.2009.09.061 es_ES
dc.description.references Causin, V., Yang, B.-X., Marega, C., Goh, S. H., & Marigo, A. (2009). Nucleation, structure and lamellar morphology of isotactic polypropylene filled with polypropylene-grafted multiwalled carbon nanotubes. European Polymer Journal, 45(8), 2155-2163. doi:10.1016/j.eurpolymj.2009.05.026 es_ES
dc.description.references Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K. M., Jannakoudakis, A., & Docoslis, A. (2008). Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation and Stability, 93(5), 952-967. doi:10.1016/j.polymdegradstab.2008.01.033 es_ES
dc.description.references Fang, Z., Song, P., Tong, L., & Guo, Z. (2008). Thermal degradation and flame retardancy of polypropylene/C60 nanocomposites. Thermochimica Acta, 473(1-2), 106-108. doi:10.1016/j.tca.2008.04.019 es_ES
dc.description.references Kovalchuk, A. A., Shevchenko, V. G., Shchegolikhin, A. N., Nedorezova, P. M., Klyamkina, A. N., & Aladyshev, A. M. (2008). Isotactic and syndiotactic polypropylene/multi-wall carbon nanotube composites: synthesis and properties. Journal of Materials Science, 43(22), 7132-7140. doi:10.1007/s10853-008-3029-8 es_ES
dc.description.references Rakhimkulov, A. D., Lomakin, S. M., Dubnikova, I. L., Shchegolikhin, A. N., Davidov, E. Y., & Kozlowski, R. (2010). The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites. Journal of Materials Science, 45(3), 633-640. doi:10.1007/s10853-009-3977-7 es_ES
dc.description.references Sahoo, N. G., Thet, N. T., Tan, Q. H., Li, L., Chan, S. H., Zhao, J., & Yu, S. (2009). Effect of Carbon Nanotubes and Processing Methods on the Properties of Carbon Nanotube/Polypropylene Composites. Journal of Nanoscience and Nanotechnology, 9(10), 5910-5919. doi:10.1166/jnn.2009.1236 es_ES
dc.description.references Prashantha, K., Soulestin, J., Lacrampe, M. F., Claes, M., Dupin, G., & Krawczak, P. (2008). Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polymer Letters, 2(10), 735-745. doi:10.3144/expresspolymlett.2008.87 es_ES
dc.description.references Radhakrishnan, V. K., Davis, E. W., & Davis, V. A. (2010). Influence of initial mixing methods on melt-extruded single-walled carbon nanotube-polypropylene nanocomposites. Polymer Engineering & Science, 50(9), 1831-1842. doi:10.1002/pen.21696 es_ES
dc.description.references Fu, S., Song, P., Yang, H., Jin, Y., Lu, F., Ye, J., & Wu, Q. (2010). Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. Journal of Materials Science, 45(13), 3520-3528. doi:10.1007/s10853-010-4394-7 es_ES
dc.description.references Koval’chuk, A. A., Shevchenko, V. G., Shchegolikhin, A. N., Nedorezova, P. M., Klyamkina, A. N., & Aladyshev, A. M. (2008). Effect of Carbon Nanotube Functionalization on the Structural and Mechanical Properties of Polypropylene/MWCNT Composites. Macromolecules, 41(20), 7536-7542. doi:10.1021/ma801599q es_ES
dc.description.references Miller, S. G., Bauer, J. L., Maryanski, M. J., Heimann, P. J., Barlow, J. P., Gosau, J.-M., & Allred, R. E. (2010). Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Composites Science and Technology, 70(7), 1120-1125. doi:10.1016/j.compscitech.2010.02.023 es_ES
dc.description.references Cadek, M., Coleman, J. N., Barron, V., Hedicke, K., & Blau, W. J. (2002). Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters, 81(27), 5123-5125. doi:10.1063/1.1533118 es_ES
dc.description.references Qian, D., Dickey, E. C., Andrews, R., & Rantell, T. (2000). Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 76(20), 2868-2870. doi:10.1063/1.126500 es_ES
dc.description.references Chen, G.-X., Kim, H.-S., Park, B. H., & Yoon, J.-S. (2006). Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer, 47(13), 4760-4767. doi:10.1016/j.polymer.2006.04.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem