Mostrar el registro sencillo del ítem
dc.contributor.author | Coupé, Pierrick | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Chamberland, Maxime | es_ES |
dc.contributor.author | Descoteaux, Maxime | es_ES |
dc.contributor.author | Hiba, Bassem | es_ES |
dc.date.accessioned | 2015-03-03T14:52:40Z | |
dc.date.available | 2015-03-03T14:52:40Z | |
dc.date.issued | 2013-12 | |
dc.identifier.issn | 1053-8119 | |
dc.identifier.uri | http://hdl.handle.net/10251/47648 | |
dc.description.abstract | In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquis itions. A comparison with classical interpo- lation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in termsofimprovementsonimagereconstruction,fractiona lanisotropy(FA)estimation,generalizedFAandangular reconstruction for tensor and high angular resolut ion diffusion imaging (HARDI) models. Besides, fi rst results of reconstructed ultra high resolution DW images are presented at 0.6 × 0.6 × 0.6 mm 3 and0.4×0.4×0.4mm 3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fi ber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture. | es_ES |
dc.description.sponsorship | We thank the reviewers for their useful comments that helped improve the paper. We also want to thank the Pr Louis Collins for proofreading this paper and his fruitful comments. Finally, we want to thank Martine Bordessoules for her help during image acquisition of DWI used to build the phantom. This work has been supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. This work has been also partially supported by the French National Agency for Research (Project MultImAD; ANR-09-MNPS-015-01) and by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. This work benefited from the use of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), FiberNavigator (code.google.com/p/fibernavigator/), MRtrix software (http://www. brain.org.au/software/mrtrix/) and ITKsnap (www.itk.org). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | NeuroImage | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | MRI | es_ES |
dc.subject | DTI | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Collaborative patch-based super-resolution for diffusion-weighted images | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.neuroimage.2013.06.030 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-09-MNPS-0015/FR/Imagerie multimodale par résonance magnétique dans les stades précoces de la maladie d'Alzheimer/MultlmAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-09-MNPS-0015/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2011-26727/ES/MEDIDA AUTOMATICA DE ESTRUCTURAS CEREBRALES CORTICALES A PARTIR DE IMAGENES DE RM/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Coupé, P.; Manjón Herrera, JV.; Chamberland, M.; Descoteaux, M.; Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage. 83:245-261. https://doi.org/10.1016/j.neuroimage.2013.06.030 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.neuroimage.2013.06.030 | es_ES |
dc.description.upvformatpinicio | 245 | es_ES |
dc.description.upvformatpfin | 261 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 83 | es_ES |
dc.relation.senia | 257104 | |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |