- -

Collaborative patch-based super-resolution for diffusion-weighted images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Collaborative patch-based super-resolution for diffusion-weighted images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Chamberland, Maxime es_ES
dc.contributor.author Descoteaux, Maxime es_ES
dc.contributor.author Hiba, Bassem es_ES
dc.date.accessioned 2015-03-03T14:52:40Z
dc.date.available 2015-03-03T14:52:40Z
dc.date.issued 2013-12
dc.identifier.issn 1053-8119
dc.identifier.uri http://hdl.handle.net/10251/47648
dc.description.abstract In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquis itions. A comparison with classical interpo- lation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in termsofimprovementsonimagereconstruction,fractiona lanisotropy(FA)estimation,generalizedFAandangular reconstruction for tensor and high angular resolut ion diffusion imaging (HARDI) models. Besides, fi rst results of reconstructed ultra high resolution DW images are presented at 0.6 × 0.6 × 0.6 mm 3 and0.4×0.4×0.4mm 3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fi ber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture. es_ES
dc.description.sponsorship We thank the reviewers for their useful comments that helped improve the paper. We also want to thank the Pr Louis Collins for proofreading this paper and his fruitful comments. Finally, we want to thank Martine Bordessoules for her help during image acquisition of DWI used to build the phantom. This work has been supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. This work has been also partially supported by the French National Agency for Research (Project MultImAD; ANR-09-MNPS-015-01) and by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. This work benefited from the use of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), FiberNavigator (code.google.com/p/fibernavigator/), MRtrix software (http://www. brain.org.au/software/mrtrix/) and ITKsnap (www.itk.org). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof NeuroImage es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject MRI es_ES
dc.subject DTI es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Collaborative patch-based super-resolution for diffusion-weighted images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neuroimage.2013.06.030
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-09-MNPS-0015/FR/Imagerie multimodale par résonance magnétique dans les stades précoces de la maladie d'Alzheimer/MultlmAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-09-MNPS-0015/
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-26727/ES/MEDIDA AUTOMATICA DE ESTRUCTURAS CEREBRALES CORTICALES A PARTIR DE IMAGENES DE RM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Coupé, P.; Manjón Herrera, JV.; Chamberland, M.; Descoteaux, M.; Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage. 83:245-261. https://doi.org/10.1016/j.neuroimage.2013.06.030 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.neuroimage.2013.06.030 es_ES
dc.description.upvformatpinicio 245 es_ES
dc.description.upvformatpfin 261 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 83 es_ES
dc.relation.senia 257104
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem