Mostrar el registro sencillo del ítem
dc.contributor.author | Juárez Varón, David | es_ES |
dc.contributor.author | R. Balart | es_ES |
dc.contributor.author | T. Boronat | es_ES |
dc.contributor.author | Reig Pérez, Miguel Jorge | es_ES |
dc.contributor.author | Ferrándiz Bou, Santiago | es_ES |
dc.date.accessioned | 2015-03-05T08:52:36Z | |
dc.date.available | 2015-03-05T08:52:36Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1042-6914 | |
dc.identifier.uri | http://hdl.handle.net/10251/47737 | |
dc.description.abstract | Liquid silicone rubber is an interesting material at an industrial level, but there are great difficulties in the design and machining of molds, and in addition, it cannot be processed using conventional equipment. Therefore, new lines of research have focused on the search for new materials capable of providing final properties similar to liquid silicone rubber, that can also be engineered using simple, conventional processes and machinery. In this investigation, a range of compatible blends, based on two commercial grades of styrene-b-ethyleneco- butylene-b-styrene (SEBS) thermoplastic elastomer, was studied in order to obtain a range of different Shore A hardness blends for industrial applications where liquid silicone rubber (different hardness) is currently used. The two blended elastomers used had widely differing Shore A hardness values (5 and 90). Once the blended materials had been characterized, the Cross and Williams et al. [20] (Cross-WLF) mathematical model was applied in order to obtain theoretical performance curves for the viscosity of each of the blends. After this, a model was developed using the Computer Aided Engineering (CAE) software package Autodesk Moldflow 2012TM. This computer modeling validated the results obtained from the mathematical models, thus making available to process engineers the full range of hardnesses necessary for industrial products (where liquid silicone rubber is used), while still providing the advantages of thermoplastic injection molding. | es_ES |
dc.description.sponsorship | The authors wish to thank "Ministerio de Ciencia e Innovacion" IPT-310000-2010-37 and Universidad Politecnica de Valencia PAID 10012 for their financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | Materials and Manufacturing Processes | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blend | es_ES |
dc.subject | CAE | es_ES |
dc.subject | Injection | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | Rheology | es_ES |
dc.subject | SEBS | es_ES |
dc.subject | Silicone | es_ES |
dc.subject | Simulation | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Validation of the Use of SEBS Blends as a Substitute for Liquid Silicone Rubber in Injection Processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/10426914.2013.811732 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Juárez Varón, D.; R. Balart; T. Boronat; Reig Pérez, MJ.; Ferrándiz Bou, S. (2013). Validation of the Use of SEBS Blends as a Substitute for Liquid Silicone Rubber in Injection Processes. Materials and Manufacturing Processes. 28(11):1215-1221. doi:10.1080/10426914.2013.811732 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/10426914.2013.811732 | es_ES |
dc.description.upvformatpinicio | 1215 | es_ES |
dc.description.upvformatpfin | 1221 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 253185 | |
dc.identifier.eissn | 1532-2475 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Zhang, B., Wong, J. S.-P., Shi, D., Yam, R. C.-M., & Li, R. K.-Y. (2010). Investigation on the mechanical performances of ternary nylon 6/SEBS elastomer/nano-SiO2hybrid composites with controlled morphology. Journal of Applied Polymer Science, 115(1), 469-479. doi:10.1002/app.30185 | es_ES |
dc.description.references | Su, F.-H., & Huang, H.-X. (2009). Mechanical and rheological properties of PP/SEBS/OMMT ternary composites. Journal of Applied Polymer Science, 112(5), 3016-3023. doi:10.1002/app.29875 | es_ES |
dc.description.references | Sugimoto, M., Sakai, K., Aoki, Y., Taniguchi, T., Koyama, K., & Ueda, T. (2009). Rheology and morphology change with temperature of SEBS/hydrocarbon oil blends. Journal of Polymer Science Part B: Polymer Physics, 47(10), 955-965. doi:10.1002/polb.21699 | es_ES |
dc.description.references | Jose, A. J., Alagar, M., & P. Thomas, S. (2012). Preparation and Characterization of Organoclay Filled Polysulfone Nanocomposites. Materials and Manufacturing Processes, 27(3), 247-254. doi:10.1080/10426914.2011.585490 | es_ES |
dc.description.references | Ivanović, N., Marjanović, N., Grbović Novaković, J., Manasijević, M., Rakočević, Z., Andrić, V., & Hadžić, B. (2009). Experimental and Theoretical Investigations of Cured and Uncured Disiloxane Bisbenzocyclobutene Thin Films. Materials and Manufacturing Processes, 24(10-11), 1180-1184. doi:10.1080/10426910902978811 | es_ES |
dc.description.references | Perisić, M., Radojević, V., Uskoković, P. S., Stojanović, D., Jokić, B., & Aleksić, R. (2009). Wood–Thermoplastic Composites Based on Industrial Waste and Virgin High-Density Polyethylene (HDPE). Materials and Manufacturing Processes, 24(10-11), 1207-1213. doi:10.1080/10426910903032212 | es_ES |
dc.description.references | Iqbal, H., Sheikh, A. K., Al-Yousef, A., & Younas, M. (2012). Mold Design Optimization for Sand Casting of Complex Geometries Using Advance Simulation Tools. Materials and Manufacturing Processes, 27(7), 775-785. doi:10.1080/10426914.2011.648250 | es_ES |
dc.description.references | Özek, C., & Çelık, Y. H. (2011). Calculating Molding Parameters in Plastic Injection Molds with ANN and Developing Software. Materials and Manufacturing Processes, 27(2), 160-168. doi:10.1080/10426914.2011.560224 | es_ES |
dc.description.references | Hirschmanner, M., Mörwald, K., & Fröhlich, C. (2011). Next Generation Mold Level Control: Development of LevCon 2.0. Materials and Manufacturing Processes, 26(1), 169-174. doi:10.1080/10426910903206691 | es_ES |
dc.description.references | Selvakumar, P., & Bhatnagar, N. (2009). Studies on Polypropylene/Carbon Fiber Composite Foams by Nozzle-Based Microcellular Injection Molding System. Materials and Manufacturing Processes, 24(5), 533-540. doi:10.1080/10426910902742738 | es_ES |
dc.description.references | Gramegna, N., Corte, E. D., & Poles, S. (2011). Manufacturing Process Simulation for Product Design Chain Optimization. Materials and Manufacturing Processes, 26(3), 527-533. doi:10.1080/10426914.2011.564248 | es_ES |
dc.description.references | Marković, G., Radovanović, B., Marinović-Cincović, M., & Budinski-Simendić, J. (2009). The Effect of Accelerators on Curing Characteristics and Properties of Natural Rubber/Chlorosulphonated Polyethylene Rubber Blend. Materials and Manufacturing Processes, 24(10-11), 1224-1228. doi:10.1080/10426910902967087 | es_ES |
dc.description.references | Mehat, N. M., & Kamaruddin, S. (2011). Investigating the Effects of Injection Molding Parameters on the Mechanical Properties of Recycled Plastic Parts Using the Taguchi Method. Materials and Manufacturing Processes, 26(2), 202-209. doi:10.1080/10426914.2010.529587 | es_ES |
dc.description.references | Chen, C.-C., Su, P.-L., Chiou, C.-B., & Chiang, K.-T. (2011). Experimental Investigation of Designed Parameters on Dimension Shrinkage of Injection Molded Thin-Wall Part by Integrated Response Surface Methodology and Genetic Algorithm: A Case Study. Materials and Manufacturing Processes, 26(3), 534-540. doi:10.1080/10426914.2010.530331 | es_ES |
dc.description.references | Martinez, A., Castany, J., & Aisa, J. (2011). Characterization of In-Mold Decoration Process and Influence of the Fabric Characteristics in This Process. Materials and Manufacturing Processes, 26(9), 1164-1172. doi:10.1080/10426914.2010.536934 | es_ES |
dc.description.references | Primo Benitez-Rangel, J., Trejo-Hernández, M., Alberto Morales-Hernández, L., & Domínguez-González, A. (2010). Improvement of the Injection Mold Process by Using Vibration Through a Mold Accessory. Materials and Manufacturing Processes, 25(7), 577-580. doi:10.1080/10426910903124902 | es_ES |
dc.description.references | Chen, C.-C. (2011). Design of Effective Parameters on the Wick-Debinding Process for Powder Injection Molded Green Compact. Materials and Manufacturing Processes, 26(10), 1261-1268. doi:10.1080/10426914.2010.544826 | es_ES |
dc.description.references | Boronat, T., Segui, V. J., Peydro, M. A., & Reig, M. J. (2009). Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. Journal of Materials Processing Technology, 209(5), 2735-2745. doi:10.1016/j.jmatprotec.2008.06.013 | es_ES |
dc.description.references | Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x | es_ES |
dc.description.references | Reig, M. J., Segui, V. J., & Zamanillo, J. D. (2005). Rheological Behavior Modeling of Recycled ABS/PC Blends Applied to Injection Molding Process. Journal of Polymer Engineering, 25(5). doi:10.1515/polyeng.2005.25.5.435 | es_ES |