- -

Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomass Derived Products (Glycerol)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomass Derived Products (Glycerol)

Mostrar el registro completo del ítem

Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S.; Martínez Silvestre, S. (2013). Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomass Derived Products (Glycerol). ChemCatChem. 5(12):3866-3874. https://doi.org/10.1002/cctc.201300416

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47778

Ficheros en el ítem

Metadatos del ítem

Título: Gold Catalysis Opens Up a New Route for the Synthesis of Benzimidazoylquinoxaline Derivatives from Biomass Derived Products (Glycerol)
Autor: Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara Martínez Silvestre, Sergio
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Process intensification by using well-defined solid catalysts able to perform one-pot multistep reactions is one of the open fronts in heterogeneous catalysis. This is even more relevant if new, more efficient synthesis ...[+]
Palabras clave: Biomass , Cerium , Cyclization , Gold , Oxidation
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201300416
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cctc.201300416
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
Agradecimientos:
The authors wish to acknowledge the Spanish Ministry of Education and Science for the financial support in the projects Consolider-Ingenio 2010 and CTQ-2011-27550. Generalitat Valenciana is also thanked for funding through ...[+]
Tipo: Artículo

References

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d [+]
Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Johnson, D. T., & Taconi, K. A. (2007). The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26(4), 338-348. doi:10.1002/ep.10225

Prati, L., Spontoni, P., & Gaiassi, A. (2009). From Renewable to Fine Chemicals Through Selective Oxidation: The Case of Glycerol. Topics in Catalysis, 52(3), 288-296. doi:10.1007/s11244-008-9165-1

Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e

Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149. doi:10.1016/j.jcat.2009.11.001

CORMA, A., HAMID, S., IBORRA, S., & VELTY, A. (2005). Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 234(2), 340-347. doi:10.1016/j.jcat.2005.06.023

Ruppert, A. M., Meeldijk, J. D., Kuipers, B. W. M., Erné, B. H., & Weckhuysen, B. M. (2008). Glycerol Etherification over Highly Active CaO-Based Materials: New Mechanistic Aspects and Related Colloidal Particle Formation. Chemistry - A European Journal, 14(7), 2016-2024. doi:10.1002/chem.200701757

Pérez-Pariente, J., Dı́az, I., Mohino, F., & Sastre, E. (2003). Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts. Applied Catalysis A: General, 254(2), 173-188. doi:10.1016/s0926-860x(03)00481-2

Climent, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146

Migawa, M. T., Girardet, J.-L., Walker, J. A., Koszalka, G. W., Chamberlain, S. D., Drach, J. C., & Townsend, L. B. (1998). Design, Synthesis, and Antiviral Activity of α-Nucleosides: d- andl-Isomers of Lyxofuranosyl- and (5-Deoxylyxofuranosyl)benzimidazoles. Journal of Medicinal Chemistry, 41(8), 1242-1251. doi:10.1021/jm970545c

Porcari, A. R., Devivar, R. V., Kucera, L. S., Drach, J. C., & Townsend, L. B. (1998). Design, Synthesis, and Antiviral Evaluations of 1-(Substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as Nonnucleoside Analogues of 2,5,6-Trichloro-1-(β-d-ribofuranosyl)benzimidazole. Journal of Medicinal Chemistry, 41(8), 1252-1262. doi:10.1021/jm970559i

Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit,, R. W., & Michejda, C. J. (1997). Synthesis and Biological Activity of Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 2-Aryl-Substituted Benzimidazoles. Journal of Medicinal Chemistry, 40(26), 4199-4207. doi:10.1021/jm970096g

Tamm, I., & Nemes, M. M. (1957). Glycosides of chlorobenzimidazoles as inhibitors of polioviurs multiplication. Virology, 4(3), 483-498. doi:10.1016/0042-6822(57)90081-8

Mann, J., Baron, A., Opoku-Boahen, Y., Johansson, E., Parkinson, G., Kelland, L. R., & Neidle, S. (2001). A New Class of Symmetric Bisbenzimidazole-Based DNA Minor Groove-Binding Agents Showing Antitumor Activity. Journal of Medicinal Chemistry, 44(2), 138-144. doi:10.1021/jm000297b

Novellino, E., Cosimelli, B., Ehlardo, M., Greco, G., Iadanza, M., Lavecchia, A., … Martini, C. (2005). 2-(Benzimidazol-2-yl)quinoxalines:  A Novel Class of Selective Antagonists at Human A1and A3Adenosine Receptors Designed by 3D Database Searching. Journal of Medicinal Chemistry, 48(26), 8253-8260. doi:10.1021/jm050792d

Sarodnick, G., & Kempter, G. (2010). Chinoxaline durch Eintopfreaktion von 3-Hydroxyiminobutan-2-on, Brom und o-Phenylendiamin. Zeitschrift für Chemie, 22(8), 300-301. doi:10.1002/zfch.19820220805

Lippmann, E., & Shilov, W. (1984). Reaktionen mit 3-Chlorochinoxalin-2-carbaldehyd. Collection of Czechoslovak Chemical Communications, 49(5), 1304-1310. doi:10.1135/cccc19841304

Kalinin, A. A., Mamedov, V. A., & Levin, Y. A. (2000). Unexpected quinoxalinobenzimidazole rearrangement. Chemistry of Heterocyclic Compounds, 36(7), 882-883. doi:10.1007/bf02256931

Mamedov, V. A., Kalinin, A. A., Gubaidullin, A. T., Chernova, A. V., Litvinov, I. A., Levin, Y. A., & Shagidullin, R. R. (2004). Ring contraction in reactions of 3-benzoylquinoxalin-2-ones with 1,2-phenylenediamines. Quinoxaline-benzoimidazole rearrangement. Russian Chemical Bulletin, 53(1), 164-175. doi:10.1023/b:rucb.0000024846.27508.76

Mamedov, V. A., Saifina, D. F., Rizvanov, I. K., & Gubaidullin, A. T. (2008). A versatile one-step method for the synthesis of benzimidazoles from quinoxalinones and arylenediamines via a novel rearrangement. Tetrahedron Letters, 49(31), 4644-4647. doi:10.1016/j.tetlet.2008.05.060

Mamedov, V. A., Zhukova, N. A., Beschastnova, T. N., Gubaidullin, A. T., Balandina, A. A., & Latypov, S. K. (2010). A reaction for the synthesis of benzimidazoles and 1H-imidazo[4,5-b]pyridines via a novel rearrangement of quinoxalinones and their aza-analogues when exposed to 1,2-arylenediamines. Tetrahedron, 66(51), 9745-9753. doi:10.1016/j.tet.2010.10.026

Kalinin, A. A., Isaikina, O. G., & Mamedov, V. A. (2007). Quinoxaline-benzimidazole rearrangements in the reactions of 3-alkanoylquinoxalin-2-ones with 1,2-phenylenediamines. Chemistry of Heterocyclic Compounds, 43(10), 1307-1314. doi:10.1007/s10593-007-0198-3

Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492

Climent, M. J., Corma, A., Iborra, S., Mifsud, M., & Velty, A. (2010). New one-pot multistep process with multifunctional catalysts: decreasing the E factor in the synthesis of fine chemicals. Green Chem., 12(1), 99-107. doi:10.1039/b919660a

Climent, M. J., Corma, A., Iborra, S., & Mifsud, M. (2007). Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis & Catalysis, 349(11-12), 1949-1954. doi:10.1002/adsc.200700026

CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003

Climent, M. J., Corma, A., Hernández, J. C., Hungría, A. B., Iborra, S., & Martínez-Silvestre, S. (2012). Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts. Journal of Catalysis, 292, 118-129. doi:10.1016/j.jcat.2012.05.002

Ruiz, V. R., Corma, A., & Sabater, M. J. (2010). New route for the synthesis of benzimidazoles by a one-pot multistep process with mono and bifunctional solid catalysts. Tetrahedron, 66(3), 730-735. doi:10.1016/j.tet.2009.11.048

Zhang, L., & Kozmin, S. A. (2004). Gold-Catalyzed Cycloisomerization of Siloxy Enynes to Cyclohexadienes. Journal of the American Chemical Society, 126(38), 11806-11807. doi:10.1021/ja046112y

Tüysüz, H., Lehmann, C. W., Bongard, H., Tesche, B., Schmidt, R., & Schüth, F. (2008). Direct Imaging of Surface Topology and Pore System of Ordered Mesoporous Silica (MCM-41, SBA-15, and KIT-6) and Nanocast Metal Oxides by High Resolution Scanning Electron Microscopy. Journal of the American Chemical Society, 130(34), 11510-11517. doi:10.1021/ja803362s

Alhumaimess, M., Lin, Z., Weng, W., Dimitratos, N., Dummer, N. F., Taylor, S. H., … Hutchings, G. J. (2011). Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem, 5(1), 125-131. doi:10.1002/cssc.201100374

Fu, Q. (2003). Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301(5635), 935-938. doi:10.1126/science.1085721

Guzman, J., Carrettin, S., & Corma, A. (2005). Spectroscopic Evidence for the Supply of Reactive Oxygen during CO Oxidation Catalyzed by Gold Supported on Nanocrystalline CeO2. Journal of the American Chemical Society, 127(10), 3286-3287. doi:10.1021/ja043752s

Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie, 117(30), 4856-4859. doi:10.1002/ange.200500659

Guzman, J., Carrettin, S., Fierro-Gonzalez, J. C., Hao, Y., Gates, B. C., & Corma, A. (2005). CO Oxidation Catalyzed by Supported Gold: Cooperation between Gold and Nanocrystalline Rare-Earth Supports Forms Reactive Surface Superoxide and Peroxide Species. Angewandte Chemie International Edition, 44(30), 4778-4781. doi:10.1002/anie.200500659

Raw, S. A., Wilfred, C. D., & Taylor, R. J. K. (2004). Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. Organic & Biomolecular Chemistry, 2(5), 788. doi:10.1039/b315689c

Zhao, Z., Wisnoski, D. D., Wolkenberg, S. E., Leister, W. H., Wang, Y., & Lindsley, C. W. (2004). General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines. Tetrahedron Letters, 45(25), 4873-4876. doi:10.1016/j.tetlet.2004.04.144

Cho, C. S., & Oh, S. G. (2006). A new ruthenium-catalyzed approach for quinoxalines from o-phenylenediamines and vicinal-diols. Tetrahedron Letters, 47(32), 5633-5636. doi:10.1016/j.tetlet.2006.06.038

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem