- -

High-pressure study of the behavior of mineral barite by X-ray diffraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure study of the behavior of mineral barite by X-ray diffraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santamaría-Pérez, D. es_ES
dc.contributor.author Gracia, L. es_ES
dc.contributor.author Garbarino, G. es_ES
dc.contributor.author Beltrán, A. es_ES
dc.contributor.author Chuliá-Jordán, R. es_ES
dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Ferrer-Roca, Ch. es_ES
dc.contributor.author Martínez-García, D. es_ES
dc.contributor.author Segura, A. es_ES
dc.date.accessioned 2015-03-06T10:03:59Z
dc.date.available 2015-03-06T10:03:59Z
dc.date.issued 2011-08-02
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/47798
dc.description.abstract In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and HP phases of BaSO 4 is also discussed in light of our theoretical first-principles total-energy calculations. Finally, a comparison between the different equations of state obtained in our experiments is reported. © 2011 American Physical Society. es_ES
dc.description.sponsorship Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN under Projects No. CTQ2009-14596-C02-01 and No. MAT2010-21270-C04-01 as well as from Comunidad de Madrid and European Social Fund: S2009/PPQ-1551 4161893 (QUIMAPRES). The ESRF is acknowledged for provision of beamtime. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject BASO4 es_ES
dc.subject Density es_ES
dc.subject Cations es_ES
dc.subject Oxides es_ES
dc.subject Temperature es_ES
dc.subject Transition es_ES
dc.subject Raman es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title High-pressure study of the behavior of mineral barite by X-ray diffraction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.84.054102
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Santamaría-Pérez, D.; Gracia, L.; Garbarino, G.; Beltrán, A.; Chuliá-Jordán, R.; Gomis Hilario, O.; Errandonea, D.... (2011). High-pressure study of the behavior of mineral barite by X-ray diffraction. Physical Review B. 84:54102-1-54102-8. https://doi.org/10.1103/PhysRevB.84.054102 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.84.054102 es_ES
dc.description.upvformatpinicio 54102-1 es_ES
dc.description.upvformatpfin 54102-8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.relation.senia 193449
dc.identifier.eissn 1550-235X
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references RUBIN, A. E. (1997). Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32(2), 231-247. doi:10.1111/j.1945-5100.1997.tb01262.x es_ES
dc.description.references Vegas, A. (2000). Cations in Inorganic Solids. Crystallography Reviews, 7(3), 189-283. doi:10.1080/08893110008044245 es_ES
dc.description.references Santamaría-Pérez, D., & Vegas, A. (2003). The Zintl–Klemm concept applied to cations in oxides. I. The structures of ternary aluminates. Acta Crystallographica Section B Structural Science, 59(3), 305-323. doi:10.1107/s0108768103005615 es_ES
dc.description.references Vegas, A., & Jansen, M. (2001). Structural relationships between cations and alloys; an equivalence between oxidation and pressure. Acta Crystallographica Section B Structural Science, 58(1), 38-51. doi:10.1107/s0108768101019310 es_ES
dc.description.references Lee, P.-L., Huang, E., & Yu, S.-C. (2001). Phase diagram and equations of state of BaSO4. High Pressure Research, 21(2), 67-77. doi:10.1080/08957950108201005 es_ES
dc.description.references Lee, P.-L., Huang, E., & Yu, S.-C. (2003). High-pressure Raman and X-ray studies of barite, BaSO4. High Pressure Research, 23(4), 439-450. doi:10.1080/0895795031000115439 es_ES
dc.description.references Crichton, W. A., Merlini, M., Hanfland, M., & Muller, H. (2011). The crystal structure of barite, BaSO4, at high pressure. American Mineralogist, 96(2-3), 364-367. doi:10.2138/am.2011.3656 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061 es_ES
dc.description.references López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Gracia, L., Beltrán, A., & Andrés, J. (2007). Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. The Journal of Physical Chemistry B, 111(23), 6479-6485. doi:10.1021/jp067443v es_ES
dc.description.references Gracia, L., Beltrán, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105 es_ES
dc.description.references Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001 es_ES
dc.description.references Errandonea, D., Santamaría-Perez, D., Vegas, A., Nuss, J., Jansen, M., Rodríguez-Hernandez, P., & Muñoz, A. (2008). Structural stability ofFe5Si3andNi2Sistudied by high-pressure x-ray diffraction andab initiototal-energy calculations. Physical Review B, 77(9). doi:10.1103/physrevb.77.094113 es_ES
dc.description.references Santamarı́a-Pérez, D., Nuss, J., Haines, J., Jansen, M., & Vegas, A. (2004). Iron silicides and their corresponding oxides: a high-pressure study of Fe5Si3. Solid State Sciences, 6(7), 673-678. doi:10.1016/j.solidstatesciences.2004.03.027 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Klotz, S., Paumier, L., Le March, G., & Munsch, P. (2009). The effect of temperature on the hydrostatic limit of 4:1 methanol–ethanol under pressure. High Pressure Research, 29(4), 649-652. doi:10.1080/08957950903418194 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113 es_ES
dc.description.references Crichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654 es_ES
dc.description.references Huang, T., Shieh, S. R., Akhmetov, A., Liu, X., Lin, C.-M., & Lee, J.-S. (2010). Pressure-induced phase transition inBaCrO4. Physical Review B, 81(21). doi:10.1103/physrevb.81.214117 es_ES
dc.description.references Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114 es_ES
dc.description.references Panchal, V., Garg, N., & Sharma, S. M. (2006). Raman and x-ray diffraction investigations on BaMoO4under high pressures. Journal of Physics: Condensed Matter, 18(16), 3917-3929. doi:10.1088/0953-8984/18/16/002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem