- -

Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides

Show simple item record

Files in this item

dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Ruiz-Fuertes, J. es_ES
dc.contributor.author Sans, J. A. es_ES
dc.contributor.author Santamaría-Perez, D. es_ES
dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Gómez, A. es_ES
dc.contributor.author Sapiña, F. es_ES
dc.date.accessioned 2015-03-06T11:34:32Z
dc.date.available 2015-03-06T11:34:32Z
dc.date.issued 2012-04-06
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/47819
dc.description.abstract We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd 2Mo 3N, Ni 2Mo 3C 0.52N 0.48, Co 3Mo 3C 0.62N 0.38, and Fe 3Mo 3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, the least compressible material being Fe 3Mo 3C, B 0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content is increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials. © 2012 American Physical Society. es_ES
dc.description.sponsorship Research supported by Spanish MCYT under Grants No. MAT2010-21270-C04-01, No. MAT2009-14144-CO3-03, and No. CSD2007-00045 (MALTA Consolider Team). XRD experiments carried out at the Diamond Light Source (I15 beamline, proposal EE6517). en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nitrides es_ES
dc.subject Molybdenum es_ES
dc.subject Pd2Mo3N es_ES
dc.subject Carbides es_ES
dc.subject Ultra-incompressible es_ES
dc.subject Compounds es_ES
dc.subject High-pressure es_ES
dc.subject Structural stability es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.85.144103
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14144-C03-03/ES/Sintesis De Materiales Nanoestructurados Para La Obtencion De Recubrimientos Por Proyeccion De Plasma Atmosferico A Partir De Disoluciones Y Suspensiones Concentradas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Errandonea, D.; Ruiz-Fuertes, J.; Sans, JA.; Santamaría-Perez, D.; Gomis Hilario, O.; Gómez, A.; Sapiña, F. (2012). Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides. Physical Review B. 85:144103-1-144103-4. doi:10.1103/PhysRevB.85.144103 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.85.144103 es_ES
dc.description.upvformatpinicio 144103-1 es_ES
dc.description.upvformatpfin 144103-4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.relation.senia 222146
dc.identifier.eissn 1550-235X
dc.description.references Zerr, A., Riedel, R., Sekine, T., Lowther, J. E., Ching, W. Y., & Tanaka, I. (2006). Recent Advances in New Hard High-Pressure Nitrides. Advanced Materials, 18(22), 2933-2948. doi:10.1002/adma.200501872 es_ES
dc.description.references Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., Juarez-Arellano, E. A., Milman, V., … Chen, K. (2010). Novel Rhenium Nitrides. Physical Review Letters, 105(8). doi:10.1103/physrevlett.105.085504 es_ES
dc.description.references El-Himri, A., Sapiña, F., Ibañez, R., & Beltrán, A. (2001). Pd2Mo3N: a new molybdenum bimetallic interstitial nitride. Journal of Materials Chemistry, 11(9), 2311-2314. doi:10.1039/b101616o es_ES
dc.description.references Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., … Sapiña, F. (2010). High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides. Physical Review B, 82(17). doi:10.1103/physrevb.82.174105 es_ES
dc.description.references Alconchel, S., Sapiña, F., & Martínez, E. (2004). From nitrides to carbides: topotactic synthesis of the η-carbides Fe3Mo3C and Co3Mo3C. Dalton Trans., (16), 2463-2468. doi:10.1039/b404194a es_ES
dc.description.references Brazhkin, V. V., Lyapin, A. G., & Hemley, R. J. (2002). Harder than diamond: Dreams and reality. Philosophical Magazine A, 82(2), 231-253. doi:10.1080/01418610208239596 es_ES
dc.description.references Alconchel, S., Sapiña, F., Beltrán, D., & Beltrán, A. (1998). Chemistry of interstitial molybdenum ternary nitrides MnMo3N (M=Fe, Co, n=3; M=Ni, n=2). Journal of Materials Chemistry, 8(8), 1901-1909. doi:10.1039/a801643g es_ES
dc.description.references Alconchel, S., Sapiña, F., Beltrán, D., & Beltrán, A. (1999). A new approach to the synthesis of molybdenum bimetallic nitrides and oxynitrides. Journal of Materials Chemistry, 9(3), 749-755. doi:10.1039/a808697d es_ES
dc.description.references Alconchel, S., Pierini, B., Sapiña, F., & Martínez, E. (2009). Monitoring the carburization of molybdenum bimetallic nitrides and oxynitrides with CH4/H2/Ar mixtures: identification of a new carbonitride. Dalton Trans., (2), 330-339. doi:10.1039/b803448f es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Yokoo, M., Kawai, N., Nakamura, K. G., Kondo, K., Tange, Y., & Tsuchiya, T. (2009). Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. Physical Review B, 80(10). doi:10.1103/physrevb.80.104114 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references He, D., & Duffy, T. S. (2006). X-ray diffraction study of the static strength of tungsten to69GPa. Physical Review B, 73(13). doi:10.1103/physrevb.73.134106 es_ES
dc.description.references Errandonea, D., Boehler, R., Japel, S., Mezouar, M., & Benedetti, L. R. (2006). Structural transformation of compressed solid Ar: An x-ray diffraction study to114GPa. Physical Review B, 73(9). doi:10.1103/physrevb.73.092106 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Rusu, E. V. (2009). Post-spinel transformations and equation of state inZnGa2O4: Determination at high pressure byin situx-ray diffraction. Physical Review B, 79(2). doi:10.1103/physrevb.79.024103 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Achary, S. N., Gomis, O., Manjón, F. J., Shukla, R., & Tyagi, A. K. (2012). New high-pressure phase and equation of state of Ce2Zr2O8. Journal of Applied Physics, 111(5), 053519. doi:10.1063/1.3692807 es_ES
dc.description.references Reshak, A. H., Auluck, S., & Kityk, I. V. (2011). Density Functional Calculations, Electronic Structure, and Optical Properties of Molybdenum Bimetallic Nitrides Pt2Mo3N and Pd2Mo3N. The Journal of Physical Chemistry B, 115(13), 3363-3370. doi:10.1021/jp1116382 es_ES
dc.description.references Mattesini, M., Ahuja, R., & Johansson, B. (2003). CubicHf3N4andZr3N4:A class of hard materials. Physical Review B, 68(18). doi:10.1103/physrevb.68.184108 es_ES
dc.description.references Weil, K. S., Kumta, P. N., & Grins, J. (1999). Revisiting a Rare Intermetallic Ternary Nitride, Ni2Mo3N: Crystal Structure and Property Measurements. Journal of Solid State Chemistry, 146(1), 22-35. doi:10.1006/jssc.1999.8296 es_ES
dc.description.references Fujimoto, F., Nakane, Y., Satou, M., Komori, F., Ogata, K., & Andoh, Y. (1987). Formation of molybdenum nitride films by ion beam and vapor deposition method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 19-20, 791-796. doi:10.1016/s0168-583x(87)80159-3 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Achary, S. N., Tyagi, A. K., Gall, P., & Gougeon, P. (2011). High-pressure x-ray diffraction study of CdMoO4 and EuMoO4. Journal of Applied Physics, 109(4), 043510-043510-5. doi:10.1063/1.3553850 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Ma, X., & Tu, C. (2008). High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes. Journal of Solid State Chemistry, 181(2), 355-364. doi:10.1016/j.jssc.2007.12.010 es_ES
dc.description.references Fan, C.-Z., Zeng, S.-Y., Zhan, Z.-J., Liu, R.-P., Wang, W.-K., Zhang, P., & Yao, Y.-G. (2006). Low compressible noble metal carbides with rocksalt structure: Ab initio total energy calculations of the elastic stability. Applied Physics Letters, 89(7), 071913. doi:10.1063/1.2335571 es_ES
dc.description.references Teter, D. M. (1998). Computational Alchemy: The Search for New Superhard Materials. MRS Bulletin, 23(1), 22-27. doi:10.1557/s0883769400031420 es_ES
dc.description.references Benhai, Y., Chunlei, W., Xuanyu, S., Qiuju, S., & Dong, C. (2009). Structural stability and mechanical property of WN from first-principles calculations. Journal of Alloys and Compounds, 487(1-2), 556-559. doi:10.1016/j.jallcom.2009.08.013 es_ES
dc.description.references Waki, T., Terazawa, S., Umemoto, Y., Tabata, Y., Sato, K., Kondo, A., … Nakamura, H. (2011). Metamagnetism of η-carbide-type transition-metal carbides and nitrides. Journal of Physics: Conference Series, 320, 012069. doi:10.1088/1742-6596/320/1/012069 es_ES


This item appears in the following Collection(s)

Show simple item record