- -

Strongly embedded subspaces of p-convex Banach function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Strongly embedded subspaces of p-convex Banach function spaces

Show full item record

Calabuig Rodriguez, JM.; Rodríguez Ruiz, J.; Sánchez Pérez, EA. (2013). Strongly embedded subspaces of p-convex Banach function spaces. Positivity. 17(3):775-791. doi:10.1007/s11117-012-0204-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/47866

Files in this item

Item Metadata

Title: Strongly embedded subspaces of p-convex Banach function spaces
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
Let be a p-convex () order continuous Banach function space over a positive finite measure . We characterize the subspaces of which can be found simultaneously in and a suitable space, where is a positive finite measure ...[+]
Subjects: Strongly embedded subspace , P-Convex Banach function space , Strictly singular operator , Vector measure
Copyrigths: Cerrado
Source:
Positivity. (issn: 1385-1292 ) (eissn: 1572-9281 )
DOI: 10.1007/s11117-012-0204-6
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11117-012-0204-6
Thanks:
J.M. Calabuig was supported by Ministerio de Economia y Competitividad (project MTM2011-23164) (Spain). J. Rodriguez was supported by Ministerio de Economia y Competitividad (project MTM2011-25377) (Spain). E. A. Sanchez-Perez ...[+]
Type: Artículo

References

Astashkin, S.V., Hernández, F.L., Semenov, E.M.: Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces. Studia Math. 193(3), 269–283 (2009)

Cobos, F., Pustylnik, E.: On strictly singular and strictly cosingular embeddings between Banach lattices of functions. Math. Proc. Cambridge Philos. Soc. 133(1), 183–190 (2002)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995) [+]
Astashkin, S.V., Hernández, F.L., Semenov, E.M.: Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces. Studia Math. 193(3), 269–283 (2009)

Cobos, F., Pustylnik, E.: On strictly singular and strictly cosingular embeddings between Banach lattices of functions. Math. Proc. Cambridge Philos. Soc. 133(1), 183–190 (2002)

Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

Diestel, J., Uhl J.J. Jr., Vector measures. American Mathematical Society, Providence (1977) (With a foreword by B. J. Pettis, Mathematical Surveys, No. 15)

Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E.A.: Vector measure Maurey-Rosenthal-type factorizations and $$l$$ -sums of $$L^1$$ -spaces. J. Funct. Anal. 220(2), 460–485 (2005)

Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E.A.: Spaces of $$p$$ -integrable functions with respect to a vector measure. Positivity 10(1), 1–16 (2006)

Figiel, T., Johnson, W.B., Tzafriri, L.: On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Theory 13:395–412 (1975) (Collection of articles dedicated to Lorentz, G.G. on the occasion of his sixty-fifth birthday, IV)

Flores, J., Hernández, F.L., Kalton, N.J., Tradacete, P.: Characterizations of strictly singular operators on Banach lattices. J. Lond. Math. Soc. (2) 79(3), 612–630 (2009)

Hernández, F.L., Novikov, S.Ya., Semenov, E.M.: Strictly singular embeddings between rearrangement invariant spaces, Positivity 7(no. 1–2), 119–124 (2003) [Positivity and its applications (Nijmegen, 2001)]

Hernández, F.L., Sánchez, V.M., Semenov, E.M.: Disjoint strict singularity of inclusions between rearrangement invariant spaces. Studia Math. 144(3), 209–226 (2001)

Hernández, F.L., Sánchez, V.M., Semenov, E.M.: Strictly singular and strictly co-singular inclusions between symmetric sequence spaces. J. Math. Anal. Appl. 291(2), 459–476 (2004)

Hernández, F.L., Sánchez, V.M., Semenov, E.M.: Strictly singular inclusions into $$L^1+L^\infty $$ . Math. Z. 258(1), 87–106 (2008)

Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. In: Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Function spaces, vol. 97. Springer, Berlin (1979)

Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal domain and integral extension of operators. In: Operator Theory: Advances and Applications. Acting in function spaces, vol. 180. Birkhäuser Verlag, Basel (2008)

Sánchez-Pérez, E.A.: Compactness arguments for spaces of $$p$$ -integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois J. Math. 45(3), 907–923 (2001)

[-]

This item appears in the following Collection(s)

Show full item record