Mostrar el registro sencillo del ítem
dc.contributor.author | Arenas Puig, Francisco Javier | es_ES |
dc.contributor.author | Pérez Martínez, Juan José | es_ES |
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Berjano Zanón, Enrique | es_ES |
dc.date.accessioned | 2015-03-09T10:27:32Z | |
dc.date.available | 2015-03-09T10:27:32Z | |
dc.date.issued | 2014-12-12 | |
dc.identifier.issn | 1475-925X | |
dc.identifier.uri | http://hdl.handle.net/10251/47869 | |
dc.description.abstract | Background Externally irrigated radiofrequency (RF) electrodes have been widely used to thermally ablate tumors in surface tissue and to thermally coagulate the transection plane during a surgical resection. As far as we know, no mathematical model has yet been developed to study the electrical and thermal performance of these electrodes, especially the role of the saline layer that forms around the electrode. Methods Numerical models of a TissueLink device model DS3.0 (Salient Surgical Technologies, Portsmouth, NH, USA) were developed. Irrigation was modeled including a saline layer and a heat convection term in the governing equation. Ex vivo experiments based on fragments of bovine hepatic tissue were conducted to obtain information which was used in building the numerical model. We compared the 60°C isotherm of the computer results with the whitening contour in the heated samples. Results Computer and experimental results were in fine agreement in terms of lesion depth (2.4 mm in the simulations and 2.4 ± 0.6 mm in the experiments). In contrast, the lesion width was greater in the simulation (9.6 mm vs. 7.8 ± 1.8 mm). The computer simulations allowed us to explain the role of the saline layer in creating the thermal lesion. Impedance gradually decreased as heating proceeded. The saline was not observed to boil. In the proximity of the electrode (around 1 mm) the thermal lesion was mainly created by the RF power in this zone, while at a further distance the thermal lesion was created by the hot saline on the tissue surface by simple thermal conduction. Including the heat convection term associated with the saline velocity in the governing equation was crucial to verifying that the saline layer had not reached boiling temperature. Conclusions The model reproduced thermal performance during heating in terms of lesion depth, and provided an explanation for: 1) the relationship between impedance, electrode insertion depth, and saline layer, and 2) the process of creating thermal lesions in the tissue with this type of electrode. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish "Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion" (Grant No. TEC2011-27133-C02-01). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BioMedical Engineering OnLine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Computer modeling | es_ES |
dc.subject | Irrigated electrode | es_ES |
dc.subject | Mathematical modeling | es_ES |
dc.subject | Radiofrequency ablation | es_ES |
dc.subject | Radiofrequency-assisted resection | es_ES |
dc.subject | Saline-linked technology | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Computer modeling and ex vivo experiments with a (saline-linked) irrigated electrode for RF-assisted heating | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1475-925X-13-164 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Arenas Puig, FJ.; Pérez Martínez, JJ.; Trujillo Guillen, M.; Berjano Zanón, E. (2014). Computer modeling and ex vivo experiments with a (saline-linked) irrigated electrode for RF-assisted heating. BioMedical Engineering OnLine. 13(1):1-16. https://doi.org/10.1186/1475-925X-13-164 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1475-925X-13-164 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 277676 | |
dc.identifier.pmid | 25494912 | en_EN |
dc.identifier.pmcid | PMC4271499 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Poon, R. T., Fan, S. T., & Wong, J. (2005). Liver resection using a saline-linked radiofrequency dissecting sealer for transection of the liver. Journal of the American College of Surgeons, 200(2), 308-313. doi:10.1016/j.jamcollsurg.2004.10.008 | es_ES |
dc.description.references | PARK, C.-I., LEHRMANN, H., KEYL, C., WEBER, R., SCHURR, P., SCHIEBELING-RÖMER, J., … JADIDI, A. S. (2013). Enhanced Efficiency of a Novel Porous Tip Irrigated RF Ablation Catheter for Pulmonary Vein Isolation. Journal of Cardiovascular Electrophysiology, 24(12), 1328-1335. doi:10.1111/jce.12221 | es_ES |
dc.description.references | Jin, G. Y., Han, Y. M., Lee, Y. S., & Lee, Y. C. (2008). Radiofrequency Ablation Using a Monopolar Wet Electrode for the Treatment of Inoperable Non-Small Cell Lung Cancer: a Preliminary Report. Korean Journal of Radiology, 9(2), 140. doi:10.3348/kjr.2008.9.2.140 | es_ES |
dc.description.references | Topp, S. A., McClurken, M., Lipson, D., Upadhya, G. A., Ritter, J. H., Linehan, D., & Strasberg, S. M. (2004). Saline-Linked Surface Radiofrequency Ablation. Annals of Surgery, 239(4), 518-527. doi:10.1097/01.sla.0000118927.83650.a4 | es_ES |
dc.description.references | Itamoto, T., Fukuda, S., Tashiro, H., Ohdan, H., & Asahara, T. (2006). Radiofrequency-assisted partial splenectomy with a new and simple device. The American Journal of Surgery, 192(2), 252-254. doi:10.1016/j.amjsurg.2005.12.003 | es_ES |
dc.description.references | Velanovich, V., & Weaver, M. (2003). Partial splenectomy using a coupled saline-radiofrequency hemostatic device. The American Journal of Surgery, 185(1), 66-68. doi:10.1016/s0002-9610(02)01112-1 | es_ES |
dc.description.references | Blansfield, J. A., Rapp, M. M., Chokshi, R. J., Woll, N. L., Hunsinger, M. A., Sheldon, D. G., & Shabahang, M. M. (2011). Novel Method of Stump Closure for Distal Pancreatectomy with a 75% Reduction in Pancreatic Fistula Rate. Journal of Gastrointestinal Surgery, 16(3), 524-528. doi:10.1007/s11605-011-1794-1 | es_ES |
dc.description.references | Rostas, J. W., Richards, W. O., & Thompson, L. W. (2012). Improved rate of pancreatic fistula after distal pancreatectomy: parenchymal division with the use of saline-coupled radiofrequency ablation. HPB, 14(8), 560-564. doi:10.1111/j.1477-2574.2012.00499.x | es_ES |
dc.description.references | Zeh, A., Messer, J., Davis, J., Vasarhelyi, A., & Wohlrab, D. (2010). The Aquamantys System—An Alternative To Reduce Blood Loss in Primary Total Hip Arthroplasty? The Journal of Arthroplasty, 25(7), 1072-1077. doi:10.1016/j.arth.2009.10.008 | es_ES |
dc.description.references | Kaibori, M., Matsui, K., Ishizaki, M., Sakaguchi, T., Matsushima, H., Matsui, Y., & Kwon, A.-H. (2013). A prospective randomized controlled trial of hemostasis with a bipolar sealer during hepatic transection for liver resection. Surgery, 154(5), 1046-1052. doi:10.1016/j.surg.2013.04.053 | es_ES |
dc.description.references | Frank, S. M., Wasey, J. O., Dwyer, I. M., Gokaslan, Z. L., Ness, P. M., & Kebaish, K. M. (2014). Radiofrequency bipolar hemostatic sealer reduces blood loss, transfusion requirements, and cost for patients undergoing multilevel spinal fusion surgery: a case control study. Journal of Orthopaedic Surgery and Research, 9(1). doi:10.1186/s13018-014-0050-2 | es_ES |
dc.description.references | Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438 | es_ES |
dc.description.references | Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 | es_ES |
dc.description.references | Wood, M., Goldberg, S., Lau, M., Goel, A., Alexander, D., Han, F., & Feinstein, S. (2011). Direct Measurement of the Lethal Isotherm for Radiofrequency Ablation of Myocardial Tissue. Circulation: Arrhythmia and Electrophysiology, 4(3), 373-378. doi:10.1161/circep.110.961169 | es_ES |
dc.description.references | Haines, D. E. (2011). Letter by Haines Regarding Article, «Direct Measurement of the Lethal Isotherm for Radiofrequency Ablation of Myocardial Tissue». Circulation: Arrhythmia and Electrophysiology, 4(5). doi:10.1161/circep.111.965459 | es_ES |
dc.description.references | Romero-Méndez, R., Tobajas, P., Burdío, F., Gonzalez, A., Navarro, A., Grande, L., & Berjano, E. (2012). Electrical-thermal performance of a cooled RF applicator for hepatic ablation with additional distant infusion of hypertonic saline:In vivostudy and preliminary computer modeling. International Journal of Hyperthermia, 28(7), 653-662. doi:10.3109/02656736.2012.711894 | es_ES |
dc.description.references | Goldberg, S. N., Ahmed, M., Gazelle, G. S., Kruskal, J. B., Huertas, J. C., Halpern, E. F., … Lenkinski, R. E. (2001). Radio-Frequency Thermal Ablation with NaCl Solution Injection: Effect of Electrical Conductivity on Tissue Heating and Coagulation—Phantom and Porcine Liver Study. Radiology, 219(1), 157-165. doi:10.1148/radiology.219.1.r01ap27157 | es_ES |