Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Orgaz, Eva María | es_ES |
dc.contributor.author | Denia, Francisco David | es_ES |
dc.contributor.author | Martínez-Casas, José | es_ES |
dc.contributor.author | Baeza, Luis | es_ES |
dc.date.accessioned | 2015-03-10T12:00:03Z | |
dc.date.available | 2015-03-10T12:00:03Z | |
dc.date.issued | 2014-06 | |
dc.identifier.issn | 1687-8132 | |
dc.identifier.uri | http://hdl.handle.net/10251/47916 | |
dc.description.abstract | A finite element approach is proposed for the acoustic analysis of automotive silencers including a perforated duct with uniform axial mean flow and an outer chamber with heterogeneous absorbent material. This material can be characterized by means of its equivalent acoustic properties, considered coordinate-dependent via the introduction of a heterogeneous bulk density, and the corresponding material airflow resistivity variations. An approach has been implemented to solve the pressure wave equation for a nonmoving heterogeneous medium, associated with the problem of sound propagation in the outer chamber. On the other hand, the governing equation in the central duct has been solved in terms of the acoustic velocity potential considering the presence of a moving medium. The coupling between both regions and the corresponding acoustic fields has been carried out by means of a perforated duct and its acoustic impedance, adapted here to include absorbent material heterogeneities and mean flow effects simultaneously. It has been found that bulk density heterogeneities have a considerable influence on the silencer transmission loss. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economia y Competitividad (Projects DPI2010-15412 and TRA2013-45596-C2-1-R), Conselleria d'Educacio, Cultura i Esport (Project Prometeo/2012/023), and Programa de Apoyo a la Investigacion y Desarrollo (PAID-05-12 and Project SP20120452) of Universitat Politecnica de Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Advances in Mechanical Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Dissipative silencer | es_ES |
dc.subject | Absorbent material | es_ES |
dc.subject | Bulk density | es_ES |
dc.subject | Heterogeneity | es_ES |
dc.subject | Flow | es_ES |
dc.subject | FEM | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | 3D acoustic modelling of dissipative silencers with nonhomogeneous properties and mean flow | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/537935 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-15412/ES/MODELOS ACUSTICOS AVANZADOS DE DEGRADACION EN MATERIALES. APLICACION A SILENCIADORES, CATALIZADORES Y FILTROS DE PARTICULAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-12-SP20120452/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2013-45596-C2-1-R/ES/DESARROLLO DE NUEVAS TECNOLOGIAS DESTINADAS A REDUCIR EL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO EN ENTORNOS URBANOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles | es_ES |
dc.description.bibliographicCitation | Sánchez Orgaz, EM.; Denia, FD.; Martínez-Casas, J.; Baeza, L. (2014). 3D acoustic modelling of dissipative silencers with nonhomogeneous properties and mean flow. Advances in Mechanical Engineering. 2014(1):1-10. https://doi.org/10.1155/2014/537935 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/537935 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 268600 | |
dc.identifier.eissn | 1687-8140 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Selamet, A., Xu, M. B., Lee, I. J., & Huff, N. T. (2005). Dissipative expansion chambers with two concentric layers of fibrous material. International Journal of Vehicle Noise and Vibration, 1(3/4), 341. doi:10.1504/ijvnv.2005.007531 | es_ES |
dc.description.references | Selamet, A., Xu, M. B., Lee, I. J., & Huff, N. T. (2006). Effect of voids on the acoustics of perforated dissipative silencers. International Journal of Vehicle Noise and Vibration, 2(4), 357. doi:10.1504/ijvnv.2006.012785 | es_ES |
dc.description.references | Antebas, A. G., Denia, F. D., Pedrosa, A. M., & Fuenmayor, F. J. (2013). A finite element approach for the acoustic modeling of perforated dissipative mufflers with non-homogeneous properties. Mathematical and Computer Modelling, 57(7-8), 1970-1978. doi:10.1016/j.mcm.2012.01.021 | es_ES |
dc.description.references | Peat, K. S., & Rathi, K. L. (1995). A finite element analysis of the convected acoustic wave motion in dissipative silencers. Journal of Sound and Vibration, 184(3), 529-545. doi:10.1006/jsvi.1995.0331 | es_ES |
dc.description.references | Allam, S., & Åbom, M. (2006). Sound propagation in an array of narrow porous channels with application to diesel particulate filters. Journal of Sound and Vibration, 291(3-5), 882-901. doi:10.1016/j.jsv.2005.07.022 | es_ES |
dc.description.references | Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 | es_ES |
dc.description.references | Montenegro, G., Della Torre, A., Onorati, A., & Fairbrother, R. (2013). A Nonlinear Quasi-3D Approach for the Modeling of Mufflers with Perforated Elements and Sound-Absorbing Material. Advances in Acoustics and Vibration, 2013, 1-10. doi:10.1155/2013/546120 | es_ES |
dc.description.references | Sullivan, J. W., & Crocker, M. J. (1978). Analysis of concentric‐tube resonators having unpartitioned cavities. The Journal of the Acoustical Society of America, 64(1), 207-215. doi:10.1121/1.381963 | es_ES |
dc.description.references | Kirby, R., & Cummings, A. (1998). THE IMPEDANCE OF PERFORATED PLATES SUBJECTED TO GRAZING GAS FLOW AND BACKED BY POROUS MEDIA. Journal of Sound and Vibration, 217(4), 619-636. doi:10.1006/jsvi.1998.1811 | es_ES |
dc.description.references | Lee, I., Selamet, A., & Huff, N. T. (2006). Acoustic impedance of perforations in contact with fibrous material. The Journal of the Acoustical Society of America, 119(5), 2785-2797. doi:10.1121/1.2188354 | es_ES |
dc.description.references | Pierce, A. D. (1990). Wave equation for sound in fluids with unsteady inhomogeneous flow. The Journal of the Acoustical Society of America, 87(6), 2292-2299. doi:10.1121/1.399073 | es_ES |
dc.description.references | Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 | es_ES |
dc.description.references | Lee, I., & Selamet, A. (2012). Measurement of acoustic impedance of perforations in contact with absorbing material in the presence of mean flow. Noise Control Engineering Journal, 60(3), 258-266. doi:10.3397/1.3701003 | es_ES |
dc.description.references | Kirby, R., & Denia, F. D. (2007). Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. The Journal of the Acoustical Society of America, 122(6), 3471-3482. doi:10.1121/1.2793614 | es_ES |
dc.description.references | Selamet, A., Xu, M. B., Lee, I.-J., & Huff, N. T. (2004). Analytical approach for sound attenuation in perforated dissipative silencers. The Journal of the Acoustical Society of America, 115(5), 2091-2099. doi:10.1121/1.1694994 | es_ES |
dc.description.references | Denia, F. D., Selamet, A., Fuenmayor, F. J., & Kirby, R. (2007). Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, 302(4-5), 1000-1017. doi:10.1016/j.jsv.2007.01.005 | es_ES |
dc.description.references | Denia, F. D., Antebas, A. G., Selamet, A., & Pedrosa, A. M. (2011). Acoustic characteristics of circular dissipative reversing chamber mufflers. Noise Control Engineering Journal, 59(3), 234. doi:10.3397/1.3560904 | es_ES |
dc.description.references | Kirby, R., & Cummings, A. (1999). Prediction of the bulk acoustic properties of fibrous materials at low frequencies1A shorter version of this paper was presented at the EuroNoise Conference, Lyon, France, 21-23 March 19951. Applied Acoustics, 56(2), 101-125. doi:10.1016/s0003-682x(98)00015-2 | es_ES |
dc.description.references | Selamet, A., Lee, I. ., & Huff, N. . (2003). Acoustic attenuation of hybrid silencers. Journal of Sound and Vibration, 262(3), 509-527. doi:10.1016/s0022-460x(03)00109-3 | es_ES |
dc.description.references | Payri, F., Broatch, A., Salavert, J. M., & Moreno, D. (2010). Acoustic response of fibrous absorbent materials to impulsive transient excitations. Journal of Sound and Vibration, 329(7), 880-892. doi:10.1016/j.jsv.2009.10.015 | es_ES |
dc.description.references | Lee, S.-H., & Ih, J.-G. (2003). Empirical model of the acoustic impedance of a circular orifice in grazing mean flow. The Journal of the Acoustical Society of America, 114(1), 98-113. doi:10.1121/1.1581280 | es_ES |