Brutel-Vuilmet, C., Guigou-Carter, C., Villot, M., & Jean, P. (2006). Measurement of the Sound Reduction Index as a Function of the Incidence Angle by Two Different Methods. Building Acoustics, 13(1), 33-48. doi:10.1260/135101006776324842
Clasen, D., & Langer, S. (2007). Finite Element Approach for Flanking Transmission in Building Acoustics. Building Acoustics, 14(1), 1-14. doi:10.1260/135101007780661428
Craik, R. J. . (2001). The contribution of long flanking paths to sound transmission in buildings. Applied Acoustics, 62(1), 29-46. doi:10.1016/s0003-682x(00)00020-7
[+]
Brutel-Vuilmet, C., Guigou-Carter, C., Villot, M., & Jean, P. (2006). Measurement of the Sound Reduction Index as a Function of the Incidence Angle by Two Different Methods. Building Acoustics, 13(1), 33-48. doi:10.1260/135101006776324842
Clasen, D., & Langer, S. (2007). Finite Element Approach for Flanking Transmission in Building Acoustics. Building Acoustics, 14(1), 1-14. doi:10.1260/135101007780661428
Craik, R. J. . (2001). The contribution of long flanking paths to sound transmission in buildings. Applied Acoustics, 62(1), 29-46. doi:10.1016/s0003-682x(00)00020-7
EN ISO (2000), 12354-1:2000. Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 1: Airborne sound insulation between rooms, International Organization for Standardization, Geneva.
EN ISO (2000), 12354-2:2000. Building acoustics - Estimation of acoustic performance of buildings from the performance of elements - Part 2: Impact sound insulation between rooms, International Organization for Standardization, Geneva.
Galbrun, L. (2008). The prediction of airborne sound transmission between two rooms using first-order flanking paths. Applied Acoustics, 69(12), 1332-1342. doi:10.1016/j.apacoust.2007.08.010
Gerretsen, E. (1979). Calculation of the sound transmission between dwellings by partitions and flanking structures. Applied Acoustics, 12(6), 413-433. doi:10.1016/0003-682x(79)90001-x
Gerretsen, E. (1986). Calculation of airborne and impact sound insulation between dwellings. Applied Acoustics, 19(4), 245-264. doi:10.1016/0003-682x(86)90001-0
Gerretsen, E. (2008). Prediction models for building performance ‐ European need and world wide use. The Journal of the Acoustical Society of America, 123(5), 3189-3189. doi:10.1121/1.2933310
ISO (2006), 10848-parts 1, 2 and 3. Laboratory measurement of the flanking transmission of airborne and impact sound, between adjoining rooms.
Kling C. (2008), <i>Investigations into Damping in Building Acoustics by Use of Downscaled Models</i>, Ph.D. Thesis, Aachen, Aachener Beiträge zur Technischen Akustik.
Mahn J. (2009), <i>Prediction of Flanking Noise Transmission in Lightweight Building Constructions: A Theoretical and Experimental Evaluation of the Application of EN12354-1</i>, Ph.D. Thesis, University of Canterbury, Department of Mechanical Engineering.
Maluski, S. P. S., & Gibbs, B. M. (2000). Application of a finite-element model to low-frequency sound insulation in dwellings. The Journal of the Acoustical Society of America, 108(4), 1741-1751. doi:10.1121/1.1310355
Maynard, J. D., Williams, E. G., & Lee, Y. (1985). Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. The Journal of the Acoustical Society of America, 78(4), 1395-1413. doi:10.1121/1.392911
Metzen, H. A. (1999). Accuracy of CEN-Prediction Models Applied to German Building Situations. Building Acoustics, 6(3), 325-340. doi:10.1260/1351010991501374
Pedersen, D. B. (1995). Estimation of vibration attenuation through junctions of building structures. Applied Acoustics, 46(3), 285-305. doi:10.1016/0003-682x(95)00025-5
SANTOS, P., & TADEU, A. (2002). ACOUSTIC INSULATION PROVIDED BY A SINGLE WALL SEPARATING TWO CONTIGUOUS TUNNELS VIA BEM. Journal of Sound and Vibration, 257(5), 945-965. doi:10.1006/jsvi.2002.5069
[-]