Shafi, S. P., Kotyk, M. W., Cranswick, L. M. D., Michaelis, V. K., Kroeker, S., & Bieringer, M. (2009). In Situ Powder X-ray Diffraction, Synthesis, and Magnetic Properties of the Defect Zircon Structure ScVO4−x. Inorganic Chemistry, 48(22), 10553-10559. doi:10.1021/ic900927j
Mullica, D. F., Sappenfield, E. L., Abraham, M. M., Chakoumakos, B. C., & Boatner, L. A. (1996). Structural investigations of several LnVO4 compounds. Inorganica Chimica Acta, 248(1), 85-88. doi:10.1016/0020-1693(95)04971-1
Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001
[+]
Shafi, S. P., Kotyk, M. W., Cranswick, L. M. D., Michaelis, V. K., Kroeker, S., & Bieringer, M. (2009). In Situ Powder X-ray Diffraction, Synthesis, and Magnetic Properties of the Defect Zircon Structure ScVO4−x. Inorganic Chemistry, 48(22), 10553-10559. doi:10.1021/ic900927j
Mullica, D. F., Sappenfield, E. L., Abraham, M. M., Chakoumakos, B. C., & Boatner, L. A. (1996). Structural investigations of several LnVO4 compounds. Inorganica Chimica Acta, 248(1), 85-88. doi:10.1016/0020-1693(95)04971-1
Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001
Aldred, A. T. (1984). Cell volumes of APO4, AVO4, and ANbO4 compounds, where A = Sc, Y, La–Lu. Acta Crystallographica Section B Structural Science, 40(6), 569-574. doi:10.1107/s0108768184002718
Errandonea, D., Lacomba-Perales, R., Ruiz-Fuertes, J., Segura, A., Achary, S. N., & Tyagi, A. K. (2009). High-pressure structural investigation of several zircon-type orthovanadates. Physical Review B, 79(18). doi:10.1103/physrevb.79.184104
López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Ab initiostudy of high-pressure structural properties of the LuVO4and ScVO4zircon-type orthovanadates. High Pressure Research, 29(4), 582-586. doi:10.1080/08957950903417444
Manjón, F. J., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H., Errandonea, D., & Syassen, K. (2010). Lattice dynamics ofYVO4at high pressures. Physical Review B, 81(7). doi:10.1103/physrevb.81.075202
Wang, X., Loa, I., Syassen, K., Hanfland, M., & Ferrand, B. (2004). Structural properties of the zircon- and scheelite-type phases ofYVO4at high pressure. Physical Review B, 70(6). doi:10.1103/physrevb.70.064109
Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413
Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030
Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865
Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863
Guedes, I., Hirano, Y., Grimsditch, M., Wakabayashi, N., Loong, C.-K., & Boatner, L. A. (2001). Raman study of phonon modes in ErVO4 single crystals. Journal of Applied Physics, 90(4), 1843-1846. doi:10.1063/1.1384858
Garg, A. B., Rao, R., Sakuntala, T., Wani, B. N., & Vijayakumar, V. (2009). Phase stability of YbVO4 under pressure: In situ x-ray and Raman spectroscopic investigations. Journal of Applied Physics, 106(6), 063513. doi:10.1063/1.3223327
Santos, C. C., Silva, E. N., Ayala, A. P., Guedes, I., Pizani, P. S., Loong, C.-K., & Boatner, L. A. (2007). Raman investigations of rare earth orthovanadates. Journal of Applied Physics, 101(5), 053511. doi:10.1063/1.2437676
Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114
Tossell, J. A. (1975). Electronic structures of silicon, aluminum, and magnesium in tetrahedral coordination with oxygen from SCF-X.alpha. MO calculations. Journal of the American Chemical Society, 97(17), 4840-4844. doi:10.1021/ja00850a010
Rao, R., Garg, A. B., Sakuntala, T., Achary, S. N., & Tyagi, A. K. (2009). High pressure Raman scattering study on the phase stability of LuVO4. Journal of Solid State Chemistry, 182(7), 1879-1883. doi:10.1016/j.jssc.2009.05.003
Duclos, S. J., Jayaraman, A., Espinosa, G. P., Cooper, A. S., & Maines, R. G. (1989). Raman and optical absorption studies of the pressure-induced zircon to scheelite structure transformation in TbVO4 and DyV04. Journal of Physics and Chemistry of Solids, 50(8), 769-775. doi:10.1016/0022-3697(89)90055-3
Smirnov, M. B., Mirgorodsky, A. P., Kazimirov, V. Y., & Guinebretière, R. (2008). Bond-switching mechanism for the zircon-scheelite phase transition. Physical Review B, 78(9). doi:10.1103/physrevb.78.094109
Flórez, M., Contreras-García, J., Recio, J. M., & Marqués, M. (2009). Quantum-mechanical calculations of zircon to scheelite transition pathways inZrSiO4. Physical Review B, 79(10). doi:10.1103/physrevb.79.104101
Rousseau, D. L., Bauman, R. P., & Porto, S. P. S. (1981). Normal mode determination in crystals. Journal of Raman Spectroscopy, 10(1), 253-290. doi:10.1002/jrs.1250100152
Mittal, R., Garg, A. B., Vijayakumar, V., Achary, S. N., Tyagi, A. K., Godwal, B. K., … Chaplot, S. L. (2008). Investigation of the phase stability of LuVO4at high pressure using powder x-ray diffraction measurements and lattice dynamical calculations. Journal of Physics: Condensed Matter, 20(7), 075223. doi:10.1088/0953-8984/20/7/075223
Manjón, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure I.BaWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144111
Manjon, F. J., Errandonea, D., Garro, N., Pellicer-Porres, J., López-Solano, J., Rodríguez-Hernández, P., … Muñoz, A. (2006). Lattice dynamics study of scheelite tungstates under high pressure II.PbWO4. Physical Review B, 74(14). doi:10.1103/physrevb.74.144112
Panchal, V., Garg, N., & Sharma, S. M. (2006). Raman and x-ray diffraction investigations on BaMoO4under high pressures. Journal of Physics: Condensed Matter, 18(16), 3917-3929. doi:10.1088/0953-8984/18/16/002
Hardcastle, F. D., & Wachs, I. E. (1991). Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 95(13), 5031-5041. doi:10.1021/j100166a025
Brown, I. D., & Wu, K. K. (1976). Empirical parameters for calculating cation–oxygen bond valences. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(7), 1957-1959. doi:10.1107/s0567740876006869
Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., … López-Solano, J. (2010). Experimental and theoretical investigation of the stability of the monoclinicBaWO4-II phase at high pressure and high temperature. Physical Review B, 81(14). doi:10.1103/physrevb.81.144117
Tschauner, O., Errandonea, D., & Serghiou, G. (2006). Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure. Physica B: Condensed Matter, 371(1), 88-94. doi:10.1016/j.physb.2005.09.042
Errandonea, D., Kumar, R. S., Ma, X., & Tu, C. (2008). High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes. Journal of Solid State Chemistry, 181(2), 355-364. doi:10.1016/j.jssc.2007.12.010
Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048
Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061
Marqués, M., Flórez, M., Recio, J. M., Gerward, L., & Olsen, J. S. (2006). Structure and stability ofZrSiO4under hydrostatic pressure. Physical Review B, 74(1). doi:10.1103/physrevb.74.014104
Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113
Long, Y. W., Zhang, W. W., Yang, L. X., Yu, Y., Yu, R. C., Ding, S., … Jin, C. Q. (2005). Pressure-induced structural phase transition in CaCrO4: Evidence from Raman scattering studies. Applied Physics Letters, 87(18), 181901. doi:10.1063/1.2117624
Long, Y. W., Yang, L. X., Yu, Y., Li, F. Y., Yu, R. C., Ding, S., … Jin, C. Q. (2006). High-pressure Raman scattering and structural phase transition inYCrO4. Physical Review B, 74(5). doi:10.1103/physrevb.74.054110
Errandonea, D., Kumar, R. S., Gracia, L., Beltrán, A., Achary, S. N., & Tyagi, A. K. (2009). Experimental and theoretical investigation ofThGeO4at high pressure. Physical Review B, 80(9). doi:10.1103/physrevb.80.094101
Gracia, L., Beltrán, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105
Errandonea, D. (2007). Landau theory applied to phase transitions in calcium orthotungstate and isostructural compounds. Europhysics Letters (EPL), 77(5), 56001. doi:10.1209/0295-5075/77/56001
Errandonea, D., & Manjón, F. J. (2009). On the ferroelastic nature of the scheelite-to-fergusonite phase transition in orthotungstates and orthomolybdates. Materials Research Bulletin, 44(4), 807-811. doi:10.1016/j.materresbull.2008.09.024
Errandonea, D., Pellicer-Porres, J., Manjón, F. J., Segura, A., Ferrer-Roca, C., Kumar, R. S., … Aquilanti, G. (2005). High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4. Physical Review B, 72(17). doi:10.1103/physrevb.72.174106
Errandonea, D. (2005). High-pressure X-ray diffraction study of EuWO4 to 12 GPa. physica status solidi (b), 242(14), R125-R127. doi:10.1002/pssb.200541334
Begun, G. M., Beall, G. W., Boatner, L. A., & Gregor, W. J. (1981). Raman spectra of the rare earth orthophosphates. Journal of Raman Spectroscopy, 11(4), 273-278. doi:10.1002/jrs.1250110411
Podor, R. (1995). Raman spectra of the actinide-bearing monazites. European Journal of Mineralogy, 7(6), 1353-1360. doi:10.1127/ejm/7/6/1353
Zhang, C. C., Zhang, Z. M., Dai, R. C., Wang, Z. P., Zhang, J. W., & Ding, Z. J. (2010). High-Pressure Raman and Luminescence Study on the Phase Transition of GdVO4:Eu3+ Microcrystals. The Journal of Physical Chemistry C, 114(42), 18279-18282. doi:10.1021/jp106063c
Voron’ko, Y. K., Sobol’, A. A., Shukshin, V. E., Zagumennyĭ, A. I., Zavartsev, Y. D., & Kutovoĭ, S. A. (2009). Raman spectroscopic study of structural disordering in YVO4, GdVO4, and CaWO4 crystals. Physics of the Solid State, 51(9), 1886-1893. doi:10.1134/s1063783409090200
Baran, E. J., Escobar, M. E., Fournier, L. L., & Filgueira, R. R. (1981). Die Raman-Spektren der Orthovanadate der Seltenen Erden. Zeitschrift f�r anorganische und allgemeine Chemie, 472(1), 193-199. doi:10.1002/zaac.19814720123
Frost, R. L., Henry, D. A., Weier, M. L., & Martens, W. (2006). Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (VO4)3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7), 722-732. doi:10.1002/jrs.1499
Blin, J. L., Lorriaux-Rubbens, A., Wallart, F., & Wignacourt, J. P. (1996). Synthesis and structural investigation of the Eu1–xBixVO4scheelite phase: X-ray diffraction, Raman scattering and Eu3+luminescence. J. Mater. Chem., 6(3), 385-389. doi:10.1039/jm9960600385
Manjón, F. J., Errandonea, D., López-Solano, J., Rodríguez-Hernández, P., & Muñoz, A. (2009). Negative pressures in CaWO4 nanocrystals. Journal of Applied Physics, 105(9), 094321. doi:10.1063/1.3116727
Tokunaga, S., Kato, H., & Kudo, A. (2001). Selective Preparation of Monoclinic and Tetragonal BiVO4with Scheelite Structure and Their Photocatalytic Properties. Chemistry of Materials, 13(12), 4624-4628. doi:10.1021/cm0103390
Rice, C. E., & Robinson, W. R. (1976). Lanthanum orthovanadate. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(7), 2232-2233. doi:10.1107/s0567740876007450
Errandonea, D., Manjón, F. J., Somayazulu, M., & Häusermann, D. (2004). Effects of pressure on the local atomic structure of CaWO4 and YLiF4: mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions. Journal of Solid State Chemistry, 177(4-5), 1087-1097. doi:10.1016/j.jssc.2003.10.017
[-]