- -

Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bandiello, E. es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Martinez-Garcia, D. es_ES
dc.contributor.author Santamaria-Perez, D. es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.date.accessioned 2015-03-20T10:11:09Z
dc.date.available 2015-03-20T10:11:09Z
dc.date.issued 2012-01-12
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/48139
dc.description.abstract We have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of PbCrO 4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. X-ray-diffraction, Raman, and optical absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is from a monoclinic structure to another monoclinic structure. It maintains the symmetry of the crystal but has important consequences in the physical properties; among others, a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO 4. The results are discussed in comparison with related compounds, and the effects of pressure in the electronic structure are explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained. © 2012 American Physical Society. es_ES
dc.description.sponsorship We acknowledge the financial support of the Spanish MCYT through Grants No. MAT2010-21270-C04-01/04 and No. CSD2007-00045. Financial support from the Spanish MICCIN under the Project No. CTQ2009-14596-C02-01 is also acknowledged, as well as from Comunidad de Madrid and European Social Fund: Grant No. S2009/PPQ-1551 4161893 (QUIMAPRES). en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Temperature es_ES
dc.subject Crystal es_ES
dc.subject Orthophosphates es_ES
dc.subject Transition es_ES
dc.subject Crocoite es_ES
dc.subject Spectra es_ES
dc.subject Zircon es_ES
dc.subject SrCrO4 es_ES
dc.subject Metal es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.85.024108
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Bandiello, E.; Errandonea, D.; Martinez-Garcia, D.; Santamaria-Perez, D.; Manjón Herrera, FJ. (2012). Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4. Physical Review B. 85:24108-1-24108-10. https://doi.org/10.1103/PhysRevB.85.024108 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://journals.aps.org/prb/pdf/10.1103/PhysRevB.85.024108 es_ES
dc.description.upvformatpinicio 24108-1 es_ES
dc.description.upvformatpfin 24108-10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.relation.senia 208786
dc.identifier.eissn 1550-235X
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Clavier, N., Podor, R., & Dacheux, N. (2011). Crystal chemistry of the monazite structure. Journal of the European Ceramic Society, 31(6), 941-976. doi:10.1016/j.jeurceramsoc.2010.12.019 es_ES
dc.description.references Mooney, R. C. L. (1948). Crystal Structures of a Series of Rare Earth Phosphates. The Journal of Chemical Physics, 16(10), 1003-1003. doi:10.1063/1.1746668 es_ES
dc.description.references Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26. doi:10.2138/am-1995-1-203 es_ES
dc.description.references Meldrum, A., Boatner, L. A., & Ewing, R. C. (1997). Displacive radiation effects in the monazite- and zircon-structure orthophosphates. Physical Review B, 56(21), 13805-13814. doi:10.1103/physrevb.56.13805 es_ES
dc.description.references RUBATTO, D., HERMANN, J., & BUICK, I. S. (2006). Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology, 47(10), 1973-1996. doi:10.1093/petrology/egl033 es_ES
dc.description.references Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113 es_ES
dc.description.references Huang, T., Lee, J.-S., Kung, J., & Lin, C.-M. (2010). Study of monazite under high pressure. Solid State Communications, 150(37-38), 1845-1850. doi:10.1016/j.ssc.2010.06.042 es_ES
dc.description.references Long, Y. W., Yang, L. X., Yu, Y., Li, F. Y., Yu, R. C., Ding, S., … Jin, C. Q. (2006). High-pressure Raman scattering and structural phase transition inYCrO4. Physical Review B, 74(5). doi:10.1103/physrevb.74.054110 es_ES
dc.description.references Errandonea, D., Kumar, R., López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Rabie, M. G., & Sáez Puche, R. (2011). Experimental and theoretical study of structural properties and phase transitions in YAsO4and YCrO4. Physical Review B, 83(13). doi:10.1103/physrevb.83.134109 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Achary, S. N., Tyagi, A. K., Gall, P., & Gougeon, P. (2011). High-pressure x-ray diffraction study of CdMoO4 and EuMoO4. Journal of Applied Physics, 109(4), 043510-043510-5. doi:10.1063/1.3553850 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048 es_ES
dc.description.references Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920 es_ES
dc.description.references Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-i es_ES
dc.description.references Panchal, V., Manjón, F. J., Errandonea, D., Rodriguez-Hernandez, P., López-Solano, J., Muñoz, A., … Tyagi, A. K. (2011). High-pressure study of ScVO4by Raman scattering andab initiocalculations. Physical Review B, 83(6). doi:10.1103/physrevb.83.064111 es_ES
dc.description.references Lacomba-Perales, R., Errandonea, D., Segura, A., Ruiz-Fuertes, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2011). A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. Journal of Applied Physics, 110(4), 043703. doi:10.1063/1.3622322 es_ES
dc.description.references Klotz, S., Paumier, L., Le March, G., & Munsch, P. (2009). The effect of temperature on the hydrostatic limit of 4:1 methanol–ethanol under pressure. High Pressure Research, 29(4), 649-652. doi:10.1080/08957950903418194 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Effenberger, H., & Pertlik, F. (1986). Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4(crocoite), and PbSeO4. Zeitschrift für Kristallographie, 176(1-2), 75-83. doi:10.1524/zkri.1986.176.1-2.75 es_ES
dc.description.references Silva, E. N., Ayala, A. P., Guedes, I., Paschoal, C. W. A., Moreira, R. L., Loong, C.-K., & Boatner, L. A. (2006). Vibrational spectra of monazite-type rare-earth orthophosphates. Optical Materials, 29(2-3), 224-230. doi:10.1016/j.optmat.2005.09.001 es_ES
dc.description.references Wilkins, R. W. T. (1971). The Raman spectrum of crocoite. Mineralogical Magazine, 38(294), 249-250. doi:10.1180/minmag.1971.038.294.15 es_ES
dc.description.references Frost, R. L. (2004). Raman microscopy of selected chromate minerals. Journal of Raman Spectroscopy, 35(2), 153-158. doi:10.1002/jrs.1121 es_ES
dc.description.references Lacomba-Perales, R., Ruiz-Fuertes, J., Errandonea, D., Martínez-García, D., & Segura, A. (2008). Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius. EPL (Europhysics Letters), 83(3), 37002. doi:10.1209/0295-5075/83/37002 es_ES
dc.description.references Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review, 92(5), 1324-1324. doi:10.1103/physrev.92.1324 es_ES
dc.description.references Stoltzfus, M. W., Woodward, P. M., Seshadri, R., Klepeis, J.-H., & Bursten, B. (2007). Structure and Bonding in SnWO4, PbWO4, and BiVO4:  Lone Pairs vs Inert Pairs. Inorganic Chemistry, 46(10), 3839-3850. doi:10.1021/ic061157g es_ES
dc.description.references Parhi, P., & Manivannan, V. (2009). Novel microwave initiated synthesis of Zn2SiO4 and MCrO4 (M=Ca, Sr, Ba, Pb). Journal of Alloys and Compounds, 469(1-2), 558-564. doi:10.1016/j.jallcom.2008.02.010 es_ES
dc.description.references Knight, K. S. (1996). A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 K and 290 K. Mineralogical Magazine, 60(403), 963-972. doi:10.1180/minmag.1996.060.403.11 es_ES
dc.description.references Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references Errandonea, D., Lacomba-Perales, R., Ruiz-Fuertes, J., Segura, A., Achary, S. N., & Tyagi, A. K. (2009). High-pressure structural investigation of several zircon-type orthovanadates. Physical Review B, 79(18). doi:10.1103/physrevb.79.184104 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Gracia, L., Beltrán, A., Achary, S. N., & Tyagi, A. K. (2009). Experimental and theoretical investigation ofThGeO4at high pressure. Physical Review B, 80(9). doi:10.1103/physrevb.80.094101 es_ES
dc.description.references Gracia, L., Beltrán, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105 es_ES
dc.description.references Santamaría-Pérez, D., Gracia, L., Garbarino, G., Beltrán, A., Chuliá-Jordán, R., Gomis, O., … Segura, A. (2011). High-pressure study of the behavior of mineral barite by x-ray diffraction. Physical Review B, 84(5). doi:10.1103/physrevb.84.054102 es_ES
dc.description.references Errandonea, D., Gracia, L., Beltrán, A., Vegas, A., & Meng, Y. (2011). Pressure-induced phase transitions in AgClO4. Physical Review B, 84(6). doi:10.1103/physrevb.84.064103 es_ES
dc.description.references Lacomba-Perales, R., Martinez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., Le Marchand, G., … López-Solano, J. (2010). Experimental and theoretical investigation of the stability of the monoclinicBaWO4-II phase at high pressure and high temperature. Physical Review B, 81(14). doi:10.1103/physrevb.81.144117 es_ES
dc.description.references Knight, K. S. (2000). A high temperature structural phase transition in crocoite (PbCrO4) at 1068 K: crystal structure refinement at 1073 K and thermal expansion tensor determination at 1000 K. Mineralogical Magazine, 64(2), 291-300. doi:10.1180/002646100549193 es_ES
dc.description.references Snyman, H. C., & Pistorius, C. W. F. T. (1963). Some crystallographic properties of CaSeO4and its hydrates. Zeitschrift für Kristallographie, 119(1-2), 151-154. doi:10.1524/zkri.1963.119.1-2.151 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2009). On the ferroelastic nature of the scheelite-to-fergusonite phase transition in orthotungstates and orthomolybdates. Materials Research Bulletin, 44(4), 807-811. doi:10.1016/j.materresbull.2008.09.024 es_ES
dc.description.references Panchal, V., Errandonea, D., Segura, A., Rodríguez-Hernandez, P., Muñoz, A., Lopez-Moreno, S., & Bettinelli, M. (2011). The electronic structure of zircon-type orthovanadates: Effects of high-pressure and cation substitution. Journal of Applied Physics, 110(4), 043723. doi:10.1063/1.3626060 es_ES
dc.description.references Errandonea, D., Martínez-García, D., Lacomba-Perales, R., Ruiz-Fuertes, J., & Segura, A. (2006). Effects of high pressure on the optical absorption spectrum of scintillating PbWO4 crystals. Applied Physics Letters, 89(9), 091913. doi:10.1063/1.2345228 es_ES
dc.description.references López-Moreno, S., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H., & Errandonea, D. (2011). First-principles calculations of electronic, vibrational, and structural properties of scheelite EuWO4under pressure. Physical Review B, 84(6). doi:10.1103/physrevb.84.064108 es_ES
dc.description.references Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203 es_ES
dc.description.references Errandonea, D., Segura, A., Muñoz, V., & Chevy, A. (1999). Effects of pressure and temperature on the dielectric constant of GaS, GaSe, and InSe:  Role of the electronic contribution. Physical Review B, 60(23), 15866-15874. doi:10.1103/physrevb.60.15866 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem