- -

Lattice copies of l(2) in L-1 of a vector measure and strongly orthogonal sequences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lattice copies of l(2) in L-1 of a vector measure and strongly orthogonal sequences

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jiménez Fernández, Eduardo es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2015-03-25T17:56:34Z
dc.date.available 2015-03-25T17:56:34Z
dc.date.issued 2012
dc.identifier.issn 2090-8997
dc.identifier.uri http://hdl.handle.net/10251/48304
dc.description.abstract Let m be an l(2)-valued (countably additive) vector measure and consider the space L-2(m) of square integrable functions with respect to m. The integral with respect to m allows to define several notions of orthogonal sequence in these spaces. In this paper, we center our attention in the existence of strongly m-orthonormal sequences. Combining the use of the Kadec-Pelczynski dichotomy in the domain space and the Bessaga-Pelczynski principle in the range space, we construct a two-sided disjointification method that allows to prove several structure theorems for the spaces L-1(m) and L-2(m). Under certain requirements, our main result establishes that a normalized sequence in L-2(m) with a weakly null sequence of integrals has a subsequence that is strongly m-orthonormal in L-2(m*), where m* is another l(2)-valued vector measure that satisfies L-2(m) = L-2(m*). As an application of our technique, we give a complete characterization of when a space of integrable functions with respect to an l(2)-valued positive vector measure contains a lattice copy of l(2). es_ES
dc.description.sponsorship The support of the Ministerio de Economia y Competitividad, under Project no.MTM2009-14483-C02-02 (Spain) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Function Spaces and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Banach lattice es_ES
dc.subject Vector measure
dc.subject Integration
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Lattice copies of l(2) in L-1 of a vector measure and strongly orthogonal sequences es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2012/357210
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Jiménez Fernández, E.; Sánchez Pérez, EA. (2012). Lattice copies of l(2) in L-1 of a vector measure and strongly orthogonal sequences. Journal of Function Spaces and Applications. 2012(1):1-15. https://doi.org/10.1155/2012/357210 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2012/357210 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 235019
dc.identifier.eissn 0972-6802
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2006). Spaces of p-integrable Functions with Respect to a Vector Measure. Positivity, 10(1), 1-16. doi:10.1007/s11117-005-0016-z es_ES
dc.description.references García-Raffi, L. M., Ginestar, D., & Sánchez-Pérez, E. A. (2000). Integration with respect to a vector measure and function approximation. Abstract and Applied Analysis, 5(4), 207-226. doi:10.1155/s1085337501000227 es_ES
dc.description.references Oltra, S., Pérez, E. A. S., & Valero, O. (2005). Spaces $L_2(\lambda)$ of a Positive Vector Measure $\lambda$ and Generalized Fourier Coefficients. Rocky Mountain Journal of Mathematics, 35(1), 211-225. doi:10.1216/rmjm/1181069777 es_ES
dc.description.references S�nchez P�rez, E. A. (2003). Vector measure orthonormal functions and best approximation for the 4-norm. Archiv der Mathematik, 80(2), 177-190. doi:10.1007/s00013-003-0450-8 es_ES
dc.description.references García-Raffi, L. M., Ginestar, D., & Sánchez Pérez, E. A. (2005). Vector measure orthonormal systems and self-weighted functions approximation. Publications of the Research Institute for Mathematical Sciences, 41(3), 551-563. doi:10.2977/prims/1145475222 es_ES
dc.description.references Raffi, L. M. G., Pérez, E. A. S., & Pérez, J. V. S. (2005). Commutative Sequences of Integrable Functions and Best Approximation With Respect to the Weighted Vector Measure Distance. Integral Equations and Operator Theory, 54(4), 495-510. doi:10.1007/s00020-005-1370-8 es_ES
dc.description.references Bartle, R. G., Dunford, N., & Schwartz, J. (1955). Weak Compactness and Vector Measures. Canadian Journal of Mathematics, 7, 289-305. doi:10.4153/cjm-1955-032-1 es_ES
dc.description.references Curbera, G. P. (1995). Banach Space Properties of L 1 of a Vector Measure. Proceedings of the American Mathematical Society, 123(12), 3797. doi:10.2307/2161909 es_ES
dc.description.references Lewis, D. (1970). Integration with respect to vector measures. Pacific Journal of Mathematics, 33(1), 157-165. doi:10.2140/pjm.1970.33.157 es_ES
dc.description.references Sánchez Pérez, E. A. (2001). Compactness arguments for spaces of $p$-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois Journal of Mathematics, 45(3), 907-923. doi:10.1215/ijm/1258138159 es_ES
dc.description.references Del Campo, R., Fernández, A., Ferrando, I., Mayoral, F., & Naranjo, F. (2008). Multiplication operators on spaces of integrable functions with respect to a vector measure. Journal of Mathematical Analysis and Applications, 343(1), 514-524. doi:10.1016/j.jmaa.2008.01.080 es_ES
dc.description.references Okada, S., & Ricker, W. J. (1995). The range of the integration map of a vector measure. Archiv der Mathematik, 64(6), 512-522. doi:10.1007/bf01195133 es_ES
dc.description.references Okada, S., Ricker, W. J., & Rodríguez-Piazza, L. (2002). Compactness of the integration operator associated with a vector measure. Studia Mathematica, 150(2), 133-149. doi:10.4064/sm150-2-3 es_ES
dc.description.references Meyer-Nieberg, P. (1991). Banach Lattices. Universitext. doi:10.1007/978-3-642-76724-1 es_ES
dc.description.references Diestel, J. (1984). Sequences and Series in Banach Spaces. Graduate Texts in Mathematics. doi:10.1007/978-1-4612-5200-9 es_ES
dc.description.references Del Campo, R., & Sánchez-Pérez, E. A. (2007). Positive Representations of L1 of a Vector Measure. Positivity, 11(3), 449-459. doi:10.1007/s11117-007-2075-9 es_ES
dc.description.references Figiel, T., Johnson, W. ., & Tzafriri, L. (1975). On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces. Journal of Approximation Theory, 13(4), 395-412. doi:10.1016/0021-9045(75)90023-4 es_ES
dc.description.references Kadec, M., & Pełczyński, A. (1962). Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$. Studia Mathematica, 21(2), 161-176. doi:10.4064/sm-21-2-161-176 es_ES
dc.description.references Flores, J., Hernández, F. L., Kalton, N. J., & Tradacete, P. (2009). Characterizations of strictly singular operators on Banach lattices. Journal of the London Mathematical Society, 79(3), 612-630. doi:10.1112/jlms/jdp007 es_ES
dc.description.references Johnson, W., & Schechtman, G. (2008). Multiplication operators on L(Lp) and lp-strictly singular operators. Journal of the European Mathematical Society, 1105-1119. doi:10.4171/jems/141 es_ES
dc.description.references Hernandez, F. L., Novikov, S. Y., & Semenov, E. M. (2003). Positivity, 7(1/2), 119-124. doi:10.1023/a:1025828302994 es_ES
dc.description.references Montgomery-Smith, S. J., & Semenov, E. M. (2000). Positivity, 4(4), 397-402. doi:10.1023/a:1009825521243 es_ES
dc.description.references Novikov, S. Y., Semenov, E. M., & Hernandez, F. L. (2002). Functional Analysis and Its Applications, 36(1), 71-73. doi:10.1023/a:1014438419455 es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., & Sánchez-Pérez, E. A. (2005). Vector measure Maurey–Rosenthal-type factorizations and <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mo>ℓ</mml:mo></mml:math>-sums of <mml:math altimg=«si2.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-spaces. Journal of Functional Analysis, 220(2), 460-485. doi:10.1016/j.jfa.2004.06.010 es_ES
dc.description.references Calabuig, J. M., Rodríguez, J., & Sánchez-Pérez, E. A. (2009). On the Structure of L1 of a Vector Measure via its Integration Operator. Integral Equations and Operator Theory, 64(1), 21-33. doi:10.1007/s00020-009-1670-5 es_ES
dc.description.references Rodríguez, J. (2012). Interpolation subspaces of 𝐿¹ of a vector measure and norm inequalities for the integration operator. Topics in Complex Analysis and Operator Theory, 155-163. doi:10.1090/conm/561/11113 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem