Mostrar el registro sencillo del ítem
dc.contributor.author | Jorda Mora, Enrique | es_ES |
dc.contributor.author | Zarco García, Ana María | es_ES |
dc.date.accessioned | 2015-03-27T15:49:54Z | |
dc.date.available | 2015-03-27T15:49:54Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 2090-8997 | |
dc.identifier.uri | http://hdl.handle.net/10251/48411 | |
dc.description.abstract | For an arbitrary open subset U subset of R-d or U subset of C-d and a continuous function v : U ->]0,infinity[ we show that the space h(v0) (U) of weighed harmonic functions is almost isometric to a (closed) subspace of c(0), thus extending a theorem due to Bonet and Wolf for spaces of holomorphic functions H-v0 (U) on open sets U subset of C-d. Inspired by recent work of Boyd and Rueda, we characterize in terms of the extremal points of the dual of h(v0) (U) when h(v0) (U) is isometric to a subspace of c(0). Some geometric conditions on an open set U subset of C-d and convexity conditions on a weight v on U are given to ensure that neither H-v0 (U) nor h(v0) (U) are rotund. | es_ES |
dc.description.sponsorship | The authors are grateful to J. Bonet for a lot of ideas and discussions during all this work. They are also indebted to P. Rueda, who besides giving them some references provided them some unpublished work which has inspired a big part of this paper. They also thank M. Maestre for his careful reading of the paper and helpful discussions. Finally, they thank the referees for the careful analysis of the paper and the important suggestions which they gave us. The research of the first author was supported by MICINN and FEDER, Project MTM2010-15200. The research of both authors is partially supported by Programa de Apoyo a la Investigacion y Desarrollo de la UPV PAID-06-12. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Journal of Function Spaces and Applications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Composition operators | es_ES |
dc.subject | Analytic-functions | es_ES |
dc.subject | Bounded projections | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Isomorphisms on weighed Banach spaces of harmonic and holomorphic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/178460 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-12/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jorda Mora, E.; Zarco García, AM. (2013). Isomorphisms on weighed Banach spaces of harmonic and holomorphic functions. Journal of Function Spaces and Applications. 2013:1-6. https://doi.org/10.1155/2013/178460 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2012/357210 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 251771 | |
dc.identifier.eissn | 0972-6802 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Bierstedt, K. D., Bonet, J., & Galbis, A. (1993). Weighted spaces of holomorphic functions on balanced domains. The Michigan Mathematical Journal, 40(2), 271-297. doi:10.1307/mmj/1029004753 | es_ES |
dc.description.references | Bonet, J., Dománski, P., & Lindström, M. (1999). Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions. Canadian Mathematical Bulletin, 42(2), 139-148. doi:10.4153/cmb-1999-016-x | es_ES |
dc.description.references | Bonet, J., Domański, P., Lindström, M., & Taskinen, J. (1998). Composition operators between weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 64(1), 101-118. doi:10.1017/s1446788700001336 | es_ES |
dc.description.references | Contreras, M. D., & Hernandez-Diaz, A. G. (2000). Weighted composition operators in weighted Banach spaces of analytic functions. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 69(1), 41-60. doi:10.1017/s144678870000183x | es_ES |
dc.description.references | Montes-Rodríguez, A. (2000). Weighted Composition Operators on Weighted Banach Spaces of Analytic Functions. Journal of the London Mathematical Society, 61(3), 872-884. doi:10.1112/s0024610700008875 | es_ES |
dc.description.references | Shields, A. L., & Williams, D. L. (1982). Bounded projections and the growth of harmonic conjugates in the unit disc. The Michigan Mathematical Journal, 29(1), 3-25. doi:10.1307/mmj/1029002611 | es_ES |
dc.description.references | Lusky, W. (2006). On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Mathematica, 175(1), 19-45. doi:10.4064/sm175-1-2 | es_ES |
dc.description.references | Jordá, E., & Zarco, A. M. (2012). Weighted Banach spaces of harmonic functions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 108(2), 405-418. doi:10.1007/s13398-012-0109-z | es_ES |
dc.description.references | Boyd, C., & Rueda, P. (2006). Complete weights andv-peak points of spaces of weighted holomorphic functions. Israel Journal of Mathematics, 155(1), 57-80. doi:10.1007/bf02773948 | es_ES |
dc.description.references | Boyd, C., & Rueda, P. (2008). Isometries of Weighted Spaces of Harmonic Functions. Potential Analysis, 29(1), 37-48. doi:10.1007/s11118-008-9086-4 | es_ES |
dc.description.references | Bonet, J., & Wolf, E. (2003). A note on weighted Banach spaces of holomorphic functions. Archiv der Mathematik, 81(6), 650-654. doi:10.1007/s00013-003-0568-8 | es_ES |
dc.description.references | Fabian, M., Habala, P., Hájek, P., Montesinos, V., & Zizler, V. (2011). Banach Space Theory. CMS Books in Mathematics. doi:10.1007/978-1-4419-7515-7 | es_ES |
dc.description.references | Property (M), M-ideals, and almost isometric structure of Banach spaces. (1995). Journal für die reine und angewandte Mathematik (Crelles Journal), 1995(461), 137-178. doi:10.1515/crll.1995.461.137 | es_ES |
dc.description.references | Lusky, W. (1992). On the Structure of Hv0(D) andhv0(D). Mathematische Nachrichten, 159(1), 279-289. doi:10.1002/mana.19921590119 | es_ES |