Mostrar el registro sencillo del ítem
dc.contributor.author | Arteaga Sierra, Francisco Rodrigo | es_ES |
dc.contributor.author | Milián Enrique, Carles | es_ES |
dc.contributor.author | Torres-Gómez, I. | es_ES |
dc.contributor.author | Torres-Cisneros, M. | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.contributor.author | Ferrando Cogollos, Albert | es_ES |
dc.date.accessioned | 2015-03-31T10:43:54Z | |
dc.date.available | 2015-03-31T10:43:54Z | |
dc.date.issued | 2014-09-22 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/48576 | |
dc.description | © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited | es_ES |
dc.description.abstract | We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during super- continuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed. | es_ES |
dc.description.sponsorship | F. R. A. S. thanks the Consejo Nacional de Ciencia y Tecnologia (CONACyT). F. R. A. S. and M. T. C. acknowledge partial funding provided by the projects CONCyTEG (GTO-2012-C03-195247) and DAIP-UG 382/2014. I. T. G. acknowledges CONACyT for partial support, project: 106764 (CB-2008-1). The work of A. F. was supported by the MINECO under Grant No. TEC2010-15327. C. M. thanks Dr. Miguel Arevalillo Herraez for details on GAs. F. R. A. S thanks Dr. Daniel Ceballos for providing the numerical data for the fiber dispersion. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear optics | es_ES |
dc.subject | Pulse propagation and temporal solitons | es_ES |
dc.subject | Illumination design | es_ES |
dc.subject | Optical coherence tomography | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.22.023686 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONCYTEG//GTO-2012-C03-195247/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UG/DAIP-UG/382%2F2014/MX | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACYT//(106764 (CB-2008-1)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-15327/ES/DISEÑO DE DISPOSITIVOS PLASMONICOS NO LINEALES BASADOS EN LA INTERACCION SOLITON-PLASMON/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de Modelización Interdisciplinar Intertech | es_ES |
dc.description.bibliographicCitation | Arteaga Sierra, FR.; Milián Enrique, C.; Torres-Gómez, I.; Torres-Cisneros, M.; Moltó, G.; Ferrando Cogollos, A. (2014). Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform. Optics Express. 22(19):23686-23693. https://doi.org/10.1364/OE.22.023686 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.22.023686 | es_ES |
dc.description.upvformatpinicio | 23686 | es_ES |
dc.description.upvformatpfin | 23693 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.senia | 269619 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Consejo de Ciencia y Tecnología del Estado de Guanajuato | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Universidad de Guanajuato | |
dc.description.references | Gordon, J. P. (1986). Theory of the soliton self-frequency shift. Optics Letters, 11(10), 662. doi:10.1364/ol.11.000662 | es_ES |
dc.description.references | Mitschke, F. M., & Mollenauer, L. F. (1986). Discovery of the soliton self-frequency shift. Optics Letters, 11(10), 659. doi:10.1364/ol.11.000659 | es_ES |
dc.description.references | Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78(4), 1135-1184. doi:10.1103/revmodphys.78.1135 | es_ES |
dc.description.references | Skryabin, D. V., & Gorbach, A. V. (2010). Colloquium: Looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics, 82(2), 1287-1299. doi:10.1103/revmodphys.82.1287 | es_ES |
dc.description.references | Gorbach, A. V., & Skryabin, D. V. (2007). Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photonics, 1(11), 653-657. doi:10.1038/nphoton.2007.202 | es_ES |
dc.description.references | Hause, A., Tran, T. X., Biancalana, F., Podlipensky, A., Russell, P. S. J., & Mitschke, F. (2010). Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches. Optics Letters, 35(13), 2167. doi:10.1364/ol.35.002167 | es_ES |
dc.description.references | Hause, A., & Mitschke, F. (2010). Soliton trains in motion. Physical Review A, 82(4). doi:10.1103/physreva.82.043838 | es_ES |
dc.description.references | Tran, T. X., Podlipensky, A., Russell, P. S. J., & Biancalana, F. (2010). Theory of Raman multipeak states in solid-core photonic crystal fibers. Journal of the Optical Society of America B, 27(9), 1785. doi:10.1364/josab.27.001785 | es_ES |
dc.description.references | Gorbach, A. V., & Skryabin, D. V. (2008). Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers. Optics Express, 16(7), 4858. doi:10.1364/oe.16.004858 | es_ES |
dc.description.references | Milián, C., Skryabin, D. V., & Ferrando, A. (2009). Continuum generation by dark solitons. Optics Letters, 34(14), 2096. doi:10.1364/ol.34.002096 | es_ES |
dc.description.references | Milián, C., Ferrando, A., & Skryabin, D. V. (2012). Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers. Journal of the Optical Society of America B, 29(4), 589. doi:10.1364/josab.29.000589 | es_ES |
dc.description.references | Arteaga-Sierra, F. R., Milián, C., Torres-Gómez, I., Torres-Cisneros, M., Ferrando, A., & Dávila, A. (2014). Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber. Optics Express, 22(3), 2451. doi:10.1364/oe.22.002451 | es_ES |
dc.description.references | Dekker, S. A., Judge, A. C., Pant, R., Gris-Sánchez, I., Knight, J. C., de Sterke, C. M., & Eggleton, B. J. (2011). Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Optics Express, 19(18), 17766. doi:10.1364/oe.19.017766 | es_ES |
dc.description.references | Rothhardt, J., Heidt, A. M., Hädrich, S., Demmler, S., Limpert, J., & Tünnermann, A. (2012). High stability soliton frequency-shifting mechanisms for laser synchronization applications. Journal of the Optical Society of America B, 29(6), 1257. doi:10.1364/josab.29.001257 | es_ES |
dc.description.references | Al-kadry Alaa M., & Rochette, M. (2012). Mid-infrared sources based on the soliton self-frequency shift. Journal of the Optical Society of America B, 29(6), 1347. doi:10.1364/josab.29.001347 | es_ES |
dc.description.references | Judge, A. C., Bang, O., Eggleton, B. J., Kuhlmey, B. T., Mägi, E. C., Pant, R., & de Sterke, C. M. (2009). Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber. Journal of the Optical Society of America B, 26(11), 2064. doi:10.1364/josab.26.002064 | es_ES |
dc.description.references | Pricking, S., & Giessen, H. (2010). Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers. Optics Express, 18(19), 20151. doi:10.1364/oe.18.020151 | es_ES |
dc.description.references | Pant, R., Judge, A. C., Magi, E. C., Kuhlmey, B. T., de Sterke, M., & Eggleton, B. J. (2010). Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. Journal of the Optical Society of America B, 27(9), 1894. doi:10.1364/josab.27.001894 | es_ES |
dc.description.references | Ferrando, A., Milián, C., González, N., Moltó, G., Loza, P., Arevalillo-Herráez, M., … Hernández, V. (2010). Designing supercontinuum spectra using Grid technology. 2nd Workshop on Specialty Optical Fibers and Their Applications (WSOF-2). doi:10.1117/12.867203 | es_ES |
dc.description.references | Akhmediev, N., & Karlsson, M. (1995). Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 51(3), 2602-2607. doi:10.1103/physreva.51.2602 | es_ES |
dc.description.references | Wang, J., Geng, Y.-J., Guo, B., Klima, T., Lal, B. N., Willerson, J. T., & Casscells, W. (2002). Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. Journal of the American College of Cardiology, 39(8), 1305-1313. doi:10.1016/s0735-1097(02)01767-9 | es_ES |
dc.description.references | Wang, Y., Nelson, J., Chen, Z., Reiser, B., Chuck, R., & Windeler, R. (2003). Optimal wavelength for ultrahigh-resolution optical coherence tomography. Optics Express, 11(12), 1411. doi:10.1364/oe.11.001411 | es_ES |
dc.description.references | Humbert, G., Wadsworth, W., Leon-Saval, S., Knight, J., Birks, T., St. J. Russell, P., … Stifter, D. (2006). Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 14(4), 1596. doi:10.1364/oe.14.001596 | es_ES |
dc.description.references | Wang, Y., Zhao, Y., Nelson, J. S., Chen, Z., & Windeler, R. S. (2003). Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 28(3), 182. doi:10.1364/ol.28.000182 | es_ES |
dc.description.references | Spöler, F., Kray, S., Grychtol, P., Hermes, B., Bornemann, J., Först, M., & Kurz, H. (2007). Simultaneous dual-band ultra-high resolution optical coherence tomography. Optics Express, 15(17), 10832. doi:10.1364/oe.15.010832 | es_ES |
dc.description.references | Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710-711. doi:10.1038/nnano.2009.326 | es_ES |
dc.description.references | Huntley, J. M., Widjanarko, T., & Ruiz, P. D. (2010). Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions. Measurement Science and Technology, 21(7), 075304. doi:10.1088/0957-0233/21/7/075304 | es_ES |
dc.description.references | Cao, Q., Zhegalova, N. G., Wang, S. T., Akers, W. J., & Berezin, M. Y. (2013). Multispectral imaging in the extended near-infrared window based on endogenous chromophores. Journal of Biomedical Optics, 18(10), 101318. doi:10.1117/1.jbo.18.10.101318 | es_ES |
dc.description.references | Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510-524. doi:10.1109/jqe.1987.1073392 | es_ES |
dc.description.references | Driben, R., Malomed, B. A., Yulin, A. V., & Skryabin, D. V. (2013). Newton’s cradles in optics: FromN-soliton fission to soliton chains. Physical Review A, 87(6). doi:10.1103/physreva.87.063808 | es_ES |
dc.description.references | Feldchtein, F. I., Gelikonov, G. V., Gelikonov, V. M., Iksanov, R. R., Kuranov, R. V., Sergeev, A. M., … Reitze, D. H. (1998). In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 3(6), 239. doi:10.1364/oe.3.000239 | es_ES |
dc.description.references | Gelikonov, V. M., Gelikonov, G. V., & Feldchtein, F. I. (2004). Two-wavelength optical coherence tomography. Radiophysics and Quantum Electronics, 47(10-11), 848-859. doi:10.1007/s11141-005-0024-7 | es_ES |
dc.description.references | Fujimoto, J. G., Pitris, C., Boppart, S. A., & Brezinski, M. E. (2000). Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia, 2(1-2), 9-25. doi:10.1038/sj.neo.7900071 | es_ES |
dc.description.references | Fujimoto, J. G. (2003). Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology, 21(11), 1361-1367. doi:10.1038/nbt892 | es_ES |
dc.description.references | Kerrinckx, E., Bigot, L., Douay, M., & Quiquempois, Y. (2004). Photonic crystal fiber design by means of a genetic algorithm. Optics Express, 12(9), 1990. doi:10.1364/opex.12.001990 | es_ES |
dc.description.references | Zhang, W. Q., Sharping, J. E., White, R. T., Monro, T. M., & Afshar V., S. (2010). Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation. Optics Express, 18(16), 17294. doi:10.1364/oe.18.017294 | es_ES |
dc.description.references | Zhang, W. Q., Afshar V., S., & Monro, T. M. (2009). A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Optics Express, 17(21), 19311. doi:10.1364/oe.17.019311 | es_ES |
dc.description.references | Musin, R. R., & Zheltikov, A. M. (2008). Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 281(4), 567-572. doi:10.1016/j.optcom.2007.09.035 | es_ES |
dc.description.references | Yin, G.-B., Li, S.-G., Liu, S., & Wang, X.-Y. (2011). The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm. Chinese Physics Letters, 28(6), 064215. doi:10.1088/0256-307x/28/6/064215 | es_ES |
dc.description.references | Afshar V., S., & Monro, T. M. (2009). A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Optics Express, 17(4), 2298. doi:10.1364/oe.17.002298 | es_ES |
dc.description.references | Stolen, R. H., Tomlinson, W. J., Haus, H. A., & Gordon, J. P. (1989). Raman response function of silica-core fibers. Journal of the Optical Society of America B, 6(6), 1159. doi:10.1364/josab.6.001159 | es_ES |
dc.description.references | Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 38(15), 2543-2555. doi:10.1088/0022-3727/38/15/004 | es_ES |
dc.description.references | Tripathi, R., Nassif, N., Nelson, J. S., Park, B. H., & de Boer, J. F. (2002). Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Optics Letters, 27(6), 406. doi:10.1364/ol.27.000406 | es_ES |