- -

Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arteaga Sierra, Francisco Rodrigo es_ES
dc.contributor.author Milián Enrique, Carles es_ES
dc.contributor.author Torres-Gómez, I. es_ES
dc.contributor.author Torres-Cisneros, M. es_ES
dc.contributor.author Moltó, Germán es_ES
dc.contributor.author Ferrando Cogollos, Albert es_ES
dc.date.accessioned 2015-03-31T10:43:54Z
dc.date.available 2015-03-31T10:43:54Z
dc.date.issued 2014-09-22
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/48576
dc.description © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited es_ES
dc.description.abstract We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during super- continuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed. es_ES
dc.description.sponsorship F. R. A. S. thanks the Consejo Nacional de Ciencia y Tecnologia (CONACyT). F. R. A. S. and M. T. C. acknowledge partial funding provided by the projects CONCyTEG (GTO-2012-C03-195247) and DAIP-UG 382/2014. I. T. G. acknowledges CONACyT for partial support, project: 106764 (CB-2008-1). The work of A. F. was supported by the MINECO under Grant No. TEC2010-15327. C. M. thanks Dr. Miguel Arevalillo Herraez for details on GAs. F. R. A. S thanks Dr. Daniel Ceballos for providing the numerical data for the fiber dispersion. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear optics es_ES
dc.subject Pulse propagation and temporal solitons es_ES
dc.subject Illumination design es_ES
dc.subject Optical coherence tomography es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.22.023686
dc.relation.projectID info:eu-repo/grantAgreement/CONCYTEG//GTO-2012-C03-195247/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UG/DAIP-UG/382%2F2014/MX es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACYT//(106764 (CB-2008-1)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-15327/ES/DISEÑO DE DISPOSITIVOS PLASMONICOS NO LINEALES BASADOS EN LA INTERACCION SOLITON-PLASMON/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Modelización Interdisciplinar Intertech es_ES
dc.description.bibliographicCitation Arteaga Sierra, FR.; Milián Enrique, C.; Torres-Gómez, I.; Torres-Cisneros, M.; Moltó, G.; Ferrando Cogollos, A. (2014). Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform. Optics Express. 22(19):23686-23693. https://doi.org/10.1364/OE.22.023686 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.22.023686 es_ES
dc.description.upvformatpinicio 23686 es_ES
dc.description.upvformatpfin 23693 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 269619
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo de Ciencia y Tecnología del Estado de Guanajuato es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Universidad de Guanajuato
dc.description.references Gordon, J. P. (1986). Theory of the soliton self-frequency shift. Optics Letters, 11(10), 662. doi:10.1364/ol.11.000662 es_ES
dc.description.references Mitschke, F. M., & Mollenauer, L. F. (1986). Discovery of the soliton self-frequency shift. Optics Letters, 11(10), 659. doi:10.1364/ol.11.000659 es_ES
dc.description.references Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78(4), 1135-1184. doi:10.1103/revmodphys.78.1135 es_ES
dc.description.references Skryabin, D. V., & Gorbach, A. V. (2010). Colloquium: Looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics, 82(2), 1287-1299. doi:10.1103/revmodphys.82.1287 es_ES
dc.description.references Gorbach, A. V., & Skryabin, D. V. (2007). Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photonics, 1(11), 653-657. doi:10.1038/nphoton.2007.202 es_ES
dc.description.references Hause, A., Tran, T. X., Biancalana, F., Podlipensky, A., Russell, P. S. J., & Mitschke, F. (2010). Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches. Optics Letters, 35(13), 2167. doi:10.1364/ol.35.002167 es_ES
dc.description.references Hause, A., & Mitschke, F. (2010). Soliton trains in motion. Physical Review A, 82(4). doi:10.1103/physreva.82.043838 es_ES
dc.description.references Tran, T. X., Podlipensky, A., Russell, P. S. J., & Biancalana, F. (2010). Theory of Raman multipeak states in solid-core photonic crystal fibers. Journal of the Optical Society of America B, 27(9), 1785. doi:10.1364/josab.27.001785 es_ES
dc.description.references Gorbach, A. V., & Skryabin, D. V. (2008). Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers. Optics Express, 16(7), 4858. doi:10.1364/oe.16.004858 es_ES
dc.description.references Milián, C., Skryabin, D. V., & Ferrando, A. (2009). Continuum generation by dark solitons. Optics Letters, 34(14), 2096. doi:10.1364/ol.34.002096 es_ES
dc.description.references Milián, C., Ferrando, A., & Skryabin, D. V. (2012). Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers. Journal of the Optical Society of America B, 29(4), 589. doi:10.1364/josab.29.000589 es_ES
dc.description.references Arteaga-Sierra, F. R., Milián, C., Torres-Gómez, I., Torres-Cisneros, M., Ferrando, A., & Dávila, A. (2014). Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber. Optics Express, 22(3), 2451. doi:10.1364/oe.22.002451 es_ES
dc.description.references Dekker, S. A., Judge, A. C., Pant, R., Gris-Sánchez, I., Knight, J. C., de Sterke, C. M., & Eggleton, B. J. (2011). Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Optics Express, 19(18), 17766. doi:10.1364/oe.19.017766 es_ES
dc.description.references Rothhardt, J., Heidt, A. M., Hädrich, S., Demmler, S., Limpert, J., & Tünnermann, A. (2012). High stability soliton frequency-shifting mechanisms for laser synchronization applications. Journal of the Optical Society of America B, 29(6), 1257. doi:10.1364/josab.29.001257 es_ES
dc.description.references Al-kadry Alaa M., & Rochette, M. (2012). Mid-infrared sources based on the soliton self-frequency shift. Journal of the Optical Society of America B, 29(6), 1347. doi:10.1364/josab.29.001347 es_ES
dc.description.references Judge, A. C., Bang, O., Eggleton, B. J., Kuhlmey, B. T., Mägi, E. C., Pant, R., & de Sterke, C. M. (2009). Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber. Journal of the Optical Society of America B, 26(11), 2064. doi:10.1364/josab.26.002064 es_ES
dc.description.references Pricking, S., & Giessen, H. (2010). Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers. Optics Express, 18(19), 20151. doi:10.1364/oe.18.020151 es_ES
dc.description.references Pant, R., Judge, A. C., Magi, E. C., Kuhlmey, B. T., de Sterke, M., & Eggleton, B. J. (2010). Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. Journal of the Optical Society of America B, 27(9), 1894. doi:10.1364/josab.27.001894 es_ES
dc.description.references Ferrando, A., Milián, C., González, N., Moltó, G., Loza, P., Arevalillo-Herráez, M., … Hernández, V. (2010). Designing supercontinuum spectra using Grid technology. 2nd Workshop on Specialty Optical Fibers and Their Applications (WSOF-2). doi:10.1117/12.867203 es_ES
dc.description.references Akhmediev, N., & Karlsson, M. (1995). Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 51(3), 2602-2607. doi:10.1103/physreva.51.2602 es_ES
dc.description.references Wang, J., Geng, Y.-J., Guo, B., Klima, T., Lal, B. N., Willerson, J. T., & Casscells, W. (2002). Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. Journal of the American College of Cardiology, 39(8), 1305-1313. doi:10.1016/s0735-1097(02)01767-9 es_ES
dc.description.references Wang, Y., Nelson, J., Chen, Z., Reiser, B., Chuck, R., & Windeler, R. (2003). Optimal wavelength for ultrahigh-resolution optical coherence tomography. Optics Express, 11(12), 1411. doi:10.1364/oe.11.001411 es_ES
dc.description.references Humbert, G., Wadsworth, W., Leon-Saval, S., Knight, J., Birks, T., St. J. Russell, P., … Stifter, D. (2006). Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 14(4), 1596. doi:10.1364/oe.14.001596 es_ES
dc.description.references Wang, Y., Zhao, Y., Nelson, J. S., Chen, Z., & Windeler, R. S. (2003). Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 28(3), 182. doi:10.1364/ol.28.000182 es_ES
dc.description.references Spöler, F., Kray, S., Grychtol, P., Hermes, B., Bornemann, J., Först, M., & Kurz, H. (2007). Simultaneous dual-band ultra-high resolution optical coherence tomography. Optics Express, 15(17), 10832. doi:10.1364/oe.15.010832 es_ES
dc.description.references Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710-711. doi:10.1038/nnano.2009.326 es_ES
dc.description.references Huntley, J. M., Widjanarko, T., & Ruiz, P. D. (2010). Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions. Measurement Science and Technology, 21(7), 075304. doi:10.1088/0957-0233/21/7/075304 es_ES
dc.description.references Cao, Q., Zhegalova, N. G., Wang, S. T., Akers, W. J., & Berezin, M. Y. (2013). Multispectral imaging in the extended near-infrared window based on endogenous chromophores. Journal of Biomedical Optics, 18(10), 101318. doi:10.1117/1.jbo.18.10.101318 es_ES
dc.description.references Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510-524. doi:10.1109/jqe.1987.1073392 es_ES
dc.description.references Driben, R., Malomed, B. A., Yulin, A. V., & Skryabin, D. V. (2013). Newton’s cradles in optics: FromN-soliton fission to soliton chains. Physical Review A, 87(6). doi:10.1103/physreva.87.063808 es_ES
dc.description.references Feldchtein, F. I., Gelikonov, G. V., Gelikonov, V. M., Iksanov, R. R., Kuranov, R. V., Sergeev, A. M., … Reitze, D. H. (1998). In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 3(6), 239. doi:10.1364/oe.3.000239 es_ES
dc.description.references Gelikonov, V. M., Gelikonov, G. V., & Feldchtein, F. I. (2004). Two-wavelength optical coherence tomography. Radiophysics and Quantum Electronics, 47(10-11), 848-859. doi:10.1007/s11141-005-0024-7 es_ES
dc.description.references Fujimoto, J. G., Pitris, C., Boppart, S. A., & Brezinski, M. E. (2000). Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia, 2(1-2), 9-25. doi:10.1038/sj.neo.7900071 es_ES
dc.description.references Fujimoto, J. G. (2003). Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology, 21(11), 1361-1367. doi:10.1038/nbt892 es_ES
dc.description.references Kerrinckx, E., Bigot, L., Douay, M., & Quiquempois, Y. (2004). Photonic crystal fiber design by means of a genetic algorithm. Optics Express, 12(9), 1990. doi:10.1364/opex.12.001990 es_ES
dc.description.references Zhang, W. Q., Sharping, J. E., White, R. T., Monro, T. M., & Afshar V., S. (2010). Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation. Optics Express, 18(16), 17294. doi:10.1364/oe.18.017294 es_ES
dc.description.references Zhang, W. Q., Afshar V., S., & Monro, T. M. (2009). A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Optics Express, 17(21), 19311. doi:10.1364/oe.17.019311 es_ES
dc.description.references Musin, R. R., & Zheltikov, A. M. (2008). Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 281(4), 567-572. doi:10.1016/j.optcom.2007.09.035 es_ES
dc.description.references Yin, G.-B., Li, S.-G., Liu, S., & Wang, X.-Y. (2011). The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm. Chinese Physics Letters, 28(6), 064215. doi:10.1088/0256-307x/28/6/064215 es_ES
dc.description.references Afshar V., S., & Monro, T. M. (2009). A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Optics Express, 17(4), 2298. doi:10.1364/oe.17.002298 es_ES
dc.description.references Stolen, R. H., Tomlinson, W. J., Haus, H. A., & Gordon, J. P. (1989). Raman response function of silica-core fibers. Journal of the Optical Society of America B, 6(6), 1159. doi:10.1364/josab.6.001159 es_ES
dc.description.references Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 38(15), 2543-2555. doi:10.1088/0022-3727/38/15/004 es_ES
dc.description.references Tripathi, R., Nassif, N., Nelson, J. S., Park, B. H., & de Boer, J. F. (2002). Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Optics Letters, 27(6), 406. doi:10.1364/ol.27.000406 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem