- -

Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Daniel Kressner es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2015-04-01T13:15:03Z
dc.date.available 2015-04-01T13:15:03Z
dc.date.issued 2014-08
dc.identifier.issn 1070-5325
dc.identifier.uri http://hdl.handle.net/10251/48638
dc.description.abstract Novel memory-efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree $d$. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which increases the problem size by a factor $d$. Consequently, the memory requirements of Krylov subspace methods applied to the linearization grow by this factor. In this paper, we develop two variants of the Arnoldi method that build the Krylov subspace basis implicitly, in a way that only vectors of length equal to the size of the original problem need to be stored. The proposed variants are generalizations of the so called Q-Arnoldi and TOAR methods, which have been developed for the monomial case. We also show how the typical ingredients of a full implementation of the Arnoldi method, including shift-and-invert and restarting, can be incorporated. Numerical experiments are presented for matrix polynomials up to degree $30$ arising from the interpolation of nonlinear eigenvalue problems which stem from boundary element discretizations of PDE eigenvalue problems. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Numerical Linear Algebra with Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polynomial eigenvalue problems es_ES
dc.subject Linearization es_ES
dc.subject Arnoldi method es_ES
dc.subject Chebyshev basis es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nla.1913
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Daniel Kressner; Román Moltó, JE. (2014). Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numerical Linear Algebra with Applications. 21(4):569-588. doi:10.1002/nla.1913 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/nla.1913 es_ES
dc.description.upvformatpinicio 569 es_ES
dc.description.upvformatpfin 588 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 268274
dc.description.references Mackey, D. S., Mackey, N., Mehl, C., & Mehrmann, V. (2006). Vector Spaces of Linearizations for Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications, 28(4), 971-1004. doi:10.1137/050628350 es_ES
dc.description.references Mackey, D. S., Mackey, N., Mehl, C., & Mehrmann, V. (2006). Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations. SIAM Journal on Matrix Analysis and Applications, 28(4), 1029-1051. doi:10.1137/050628362 es_ES
dc.description.references Higham, N. J., Mackey, D. S., & Tisseur, F. (2006). The Conditioning of Linearizations of Matrix Polynomials. SIAM Journal on Matrix Analysis and Applications, 28(4), 1005-1028. doi:10.1137/050628283 es_ES
dc.description.references Adhikari, B., Alam, R., & Kressner, D. (2011). Structured eigenvalue condition numbers and linearizations for matrix polynomials. Linear Algebra and its Applications, 435(9), 2193-2221. doi:10.1016/j.laa.2011.04.020 es_ES
dc.description.references Bai, Z., & Su, Y. (2005). SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 26(3), 640-659. doi:10.1137/s0895479803438523 es_ES
dc.description.references Meerbergen, K. (2009). The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem. SIAM Journal on Matrix Analysis and Applications, 30(4), 1463-1482. doi:10.1137/07069273x es_ES
dc.description.references Lin, Y., Bao, L., & Wei, Y. (2010). Model-order reduction of large-scalekth-order linear dynamical systems via akth-order Arnoldi method. International Journal of Computer Mathematics, 87(2), 435-453. doi:10.1080/00207160802130164 es_ES
dc.description.references Stewart, G. W. (2001). Matrix Algorithms. doi:10.1137/1.9780898718058 es_ES
dc.description.references Kamiya, N., Andoh, E., & Nogae, K. (1993). Eigenvalue analysis by the boundary element method: new developments. Engineering Analysis with Boundary Elements, 12(3), 151-162. doi:10.1016/0955-7997(93)90011-9 es_ES
dc.description.references Bindel D Hood A Localization theorems for nonlinear eigenvalues. arXiv: 1303.4668 2013 es_ES
dc.description.references Botchev, M. A., Sleijpen, G. L. G., & Sopaheluwakan, A. (2009). An SVD-approach to Jacobi–Davidson solution of nonlinear Helmholtz eigenvalue problems. Linear Algebra and its Applications, 431(3-4), 427-440. doi:10.1016/j.laa.2009.03.024 es_ES
dc.description.references Effenberger, C., & Kressner, D. (2012). Chebyshev interpolation for nonlinear eigenvalue problems. BIT Numerical Mathematics, 52(4), 933-951. doi:10.1007/s10543-012-0381-5 es_ES
dc.description.references Van Beeumen, R., Meerbergen, K., & Michiels, W. (2013). A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems. SIAM Journal on Scientific Computing, 35(1), A327-A350. doi:10.1137/120877556 es_ES
dc.description.references Sitton, G. A., Burrus, C. S., Fox, J. W., & Treitel, S. (2003). Factoring very-high-degree polynomials. IEEE Signal Processing Magazine, 20(6), 27-42. doi:10.1109/msp.2003.1253552 es_ES
dc.description.references Amiraslani, A., Corless, R. M., & Lancaster, P. (2008). Linearization of matrix polynomials expressed in polynomial bases. IMA Journal of Numerical Analysis, 29(1), 141-157. doi:10.1093/imanum/drm051 es_ES
dc.description.references Betcke, T., & Kressner, D. (2011). Perturbation, extraction and refinement of invariant pairs for matrix polynomials. Linear Algebra and its Applications, 435(3), 514-536. doi:10.1016/j.laa.2010.06.029 es_ES
dc.description.references Beyn, W. J., & Thümmler, V. (2010). Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 31(3), 1361-1381. doi:10.1137/080723107 es_ES
dc.description.references Kressner, D. (2009). A block Newton method for nonlinear eigenvalue problems. Numerische Mathematik, 114(2), 355-372. doi:10.1007/s00211-009-0259-x es_ES
dc.description.references Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK Users’ Guide. doi:10.1137/1.9780898719628 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Clenshaw, C. W. (1955). A note on the summation of Chebyshev series. Mathematics of Computation, 9(51), 118-118. doi:10.1090/s0025-5718-1955-0071856-0 es_ES
dc.description.references Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529 es_ES
dc.description.references Su Y A compact Arnoldi algorithm for polynomial eigenvalue problems 2008 http://math.cts.nthu.edu.tw/Mathematics/RANMEP%20Slides/Yangfeng%20Su.pdf es_ES
dc.description.references Steinbach, O., & Unger, G. (2009). A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numerische Mathematik, 113(2), 281-298. doi:10.1007/s00211-009-0239-1 es_ES
dc.description.references Effenberger, C., Kressner, D., Steinbach, O., & Unger, G. (2012). Interpolation-based solution of a nonlinear eigenvalue problem in fluid-structure interaction. PAMM, 12(1), 633-634. doi:10.1002/pamm.201210305 es_ES
dc.description.references Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., & Tisseur, F. (2013). NLEVP. ACM Transactions on Mathematical Software, 39(2), 1-28. doi:10.1145/2427023.2427024 es_ES
dc.description.references Grammont, L., Higham, N. J., & Tisseur, F. (2011). A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Linear Algebra and its Applications, 435(3), 623-640. doi:10.1016/j.laa.2009.12.038 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem