Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Begoña | es_ES |
dc.contributor.author | Coll, Carmen | es_ES |
dc.contributor.author | Sánchez, Elena | es_ES |
dc.contributor.author | Cardona Navarrete, Salvador Cayetano | es_ES |
dc.contributor.author | Navarro-Laboulais, J. | es_ES |
dc.date.accessioned | 2015-04-02T08:51:54Z | |
dc.date.available | 2015-04-02T08:51:54Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 0259-9791 | |
dc.identifier.uri | http://hdl.handle.net/10251/48658 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s10910-013-0149-4 | es_ES |
dc.description.abstract | The dynamics of the composition of chemical species in reacting systems can be characterized by a set of autonomous differential equations derived from mass conservation principles and some elementary hypothesis related to chemical reactivity. These sets of ordinary differential equations are basically non-linear, their complexity grows as much increases the number of substances present in the reacting media an can be characterized by a set of phenomenological constants which contains all the relevant information about the physical system. The determination of these kinetic constants is critical for the design or control of chemical systems from a technological point of view but the non-linear nature of the equations implies that there are hidden correlations between the parameters which maybe can be revealed with a identifiability analysis. | es_ES |
dc.description.sponsorship | This work has been partially supported by MTM2010-18228. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Continuous system | es_ES |
dc.subject | Structural properties | es_ES |
dc.subject | Identifiability | es_ES |
dc.subject | Observability | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On identifiability for chemical systems from measurable variables | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-013-0149-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, B.; Coll, C.; Sánchez, E.; Cardona Navarrete, SC.; Navarro-Laboulais, J. (2014). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry. 52(4):1023-1035. https://doi.org/10.1007/s10910-013-0149-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10910-013-0149-4 | es_ES |
dc.description.upvformatpinicio | 1023 | es_ES |
dc.description.upvformatpfin | 1035 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 238140 | |
dc.identifier.eissn | 1572-8897 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | M.J. Almendral, A. Alonso, M.S. Fuentes, Development of new methodologies for on-line determination of the bromate. J. Environ. Monit. 11, 1381–1388 (2009) | es_ES |
dc.description.references | A. Ben-Zvi, P.J. McLellan, K.B. McAuley, Identifiability of linear time-invariant differential-algebraic systems. I. The generalized Markov parameter approach. Ind. Eng. Chem. Res. 42, 6607–6618 (2003) | es_ES |
dc.description.references | T.P. Bonacquisti, A drinking water utility’s perspective on bromide, bromate, and ozonation. Toxicology 221, 145–148 (2006) | es_ES |
dc.description.references | R. Butler, A. Godley, L. Lytton, E. Cartmell, Bromate environmental contamination: review of impact and possible treatment. Crit. Rev. Environ. Sci. Tech. 35, 193–217 (2005) | es_ES |
dc.description.references | R. Butler, L. Lytton, A.R. Godley, I.E. Tothill, E. Cartmell, Bromate analysis in groundwater and wastewater samples. J. Environ. Monit. 7, 999–1006 (2005) | es_ES |
dc.description.references | B. Cantó, S.C. Cardona, C. Coll, J. Navarro-Laboulais, E. Sánchez, Dynamic optimization of a gas-liquid reactor. J. Math. Chem. 50, 381–393 (2012) | es_ES |
dc.description.references | B. Cantó, C. Coll and E. Sánchez, Identifiability of a class of discretized linear partial differential algebraic equations, Math. Problems Eng. 2011, 1–12 (2011) | es_ES |
dc.description.references | A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Alkis Constantinides and Navid Mostoufi, Upper Saddle River (Prentice Hall, New Jersey, 1999) | es_ES |
dc.description.references | P. Englezos, N. Kalogerakis, Applied Parameter Estimation for Chemical Engineers (Marcel Dekker, New York, 2001) | es_ES |
dc.description.references | U. von Gunten, Ozonation of drinking water. Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37, 1469–1487 (2003) | es_ES |
dc.description.references | B. Legube, B. Parinet, K. Gelinet, F. Berne, J-Ph Croue, Modeling of bromate formation by ozonation of surface waters in drinking water treatment. Water Res. 38, 2185–2195 (2004) | es_ES |
dc.description.references | Q. Liu, L.M. Schurter, C.E. Muller, S. Aloisio, J.S. Francisco, D.W. Margerum, Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg. Chem. 40, 4436–4442 (2001) | es_ES |
dc.description.references | J.B. Rawling, J.G. Ekerdt, Chemical Reactor Analysis and Design Fundamentals (Nob Hill Pub, Madison, 2002) | es_ES |
dc.description.references | W.E. Stewart, M. Caracotsios, Computer Aided Modelling of Reactive Systems (John Wiley and Sons, New York, 2008) | es_ES |
dc.description.references | P. Westerhoff, R. Song, G. Amy, R. Minear, Numerical kinetic models for bromide oxidation to bromine and bromate. Water Res. 32, 1687–1699 (1998) | es_ES |
dc.description.references | World Health Organization, Bromate in Drinking-water, Document WHO/SDE/WSH/05.08/78, http://www.who.int/water_sanitation_health/dwq/chemicals/en/ (accesed 26/07/12) | es_ES |