- -

Use of slag/sugar cane bagasse ash (SCBA) blends in the production of Alkali-activated materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of slag/sugar cane bagasse ash (SCBA) blends in the production of Alkali-activated materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castaldelli, V.N. es_ES
dc.contributor.author Akasaki, Jorge Luis es_ES
dc.contributor.author Melges, J.L.P. es_ES
dc.contributor.author Tashima, Mauro Mitsuuchi es_ES
dc.contributor.author Soriano Martínez, Lourdes es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Monzó Balbuena, José Mª es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2015-04-16T16:49:04Z
dc.date.available 2015-04-16T16:49:04Z
dc.date.issued 2013
dc.identifier.issn 1996-1944
dc.identifier.uri http://hdl.handle.net/10251/48911
dc.description.abstract Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. es_ES
dc.description.sponsorship Authors would like to thanks to "Ministerio de Educacion, Cultura y Deporte" of Spain ("Cooperacion Interuniversitaria" program with Brazil, Project PHB-2011-0016-PC), PPEGC program-UNESP "Universidade Estadual Paulista Julio de Mesquita Filho" Pro Reitoria de Pesquisa da UNESP, FUNDUNESP and CAPES-Brazil (Project CAPES/DGU No. 266/12). en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Alkali-activation es_ES
dc.subject Sugar cane bagasse ash es_ES
dc.subject Slag replacement es_ES
dc.subject Waste valorization es_ES
dc.subject Microstructure es_ES
dc.subject Strength development es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Use of slag/sugar cane bagasse ash (SCBA) blends in the production of Alkali-activated materials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma6083108
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//266%2F12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PHB-2011-0016-PC/ES/Nuevos conglomerantes basados en la activación alcalina de cenizas de babazo y de hoja de caña de azúcar/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Castaldelli, V.; Akasaki, JL.; Melges, J.; Tashima, MM.; Soriano Martínez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.... (2013). Use of slag/sugar cane bagasse ash (SCBA) blends in the production of Alkali-activated materials. Materials. 6:3108-3127. https://doi.org/10.3390/ma6083108 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http:dx.doi.org/10.3390/ma6083108 es_ES
dc.description.upvformatpinicio 3108 es_ES
dc.description.upvformatpfin 3127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 258620
dc.identifier.pmid 28811425 en_EN
dc.identifier.pmcid PMC5521237 en_EN
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Aı̈tcin, P.-C. (2000). Cements of yesterday and today. Cement and Concrete Research, 30(9), 1349-1359. doi:10.1016/s0008-8846(00)00365-3 es_ES
dc.description.references Flatt, R. J., Roussel, N., & Cheeseman, C. R. (2012). Concrete: An eco material that needs to be improved. Journal of the European Ceramic Society, 32(11), 2787-2798. doi:10.1016/j.jeurceramsoc.2011.11.012 es_ES
dc.description.references Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232-1243. doi:10.1016/j.cemconres.2010.11.012 es_ES
dc.description.references Chinese Construction Bubble–Preparing for a Potential Bursthttp://pt.scribd.com/doc/58599536/SocGenChinaConstruction es_ES
dc.description.references Roy, D. M. (1999). Alkali-activated cements Opportunities and challenges. Cement and Concrete Research, 29(2), 249-254. doi:10.1016/s0008-8846(98)00093-3 es_ES
dc.description.references Van Deventer, J. S. J., Provis, J. L., & Duxson, P. (2012). Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 29, 89-104. doi:10.1016/j.mineng.2011.09.009 es_ES
dc.description.references McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9-10), 1080-1090. doi:10.1016/j.jclepro.2011.02.010 es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review. Construction and Building Materials, 22(7), 1305-1314. doi:10.1016/j.conbuildmat.2007.10.015 es_ES
dc.description.references Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (1999). Alkali activation of Australian slag cements. Cement and Concrete Research, 29(1), 113-120. doi:10.1016/s0008-8846(98)00170-7 es_ES
dc.description.references Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars. Cement and Concrete Research, 29(8), 1313-1321. doi:10.1016/s0008-8846(99)00154-4 es_ES
dc.description.references Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes. Cement and Concrete Research, 29(8), 1323-1329. doi:10.1016/s0008-8846(98)00243-9 es_ES
dc.description.references Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118-2124. doi:10.1016/j.fuel.2011.01.018 es_ES
dc.description.references Duxson, P., Lukey, G. C., & van Deventer, J. S. J. (2007). The thermal evolution of metakaolin geopolymers: Part 2 – Phase stability and structural development. Journal of Non-Crystalline Solids, 353(22-23), 2186-2200. doi:10.1016/j.jnoncrysol.2007.02.050 es_ES
dc.description.references Tashima, M. M., Soriano, L., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2012). Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials, 1(3), 83-93. doi:10.1080/21650373.2012.742610 es_ES
dc.description.references Puertas, F., García-Díaz, I., Barba, A., Gazulla, M. F., Palacios, M., Gómez, M. P., & Martínez-Ramírez, S. (2008). Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, 30(9), 798-805. doi:10.1016/j.cemconcomp.2008.06.003 es_ES
dc.description.references Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106. doi:10.1016/j.conbuildmat.2013.01.031 es_ES
dc.description.references Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2009). Tungsten mine waste geopolymeric binder: Preliminary hydration products investigations. Construction and Building Materials, 23(1), 200-209. doi:10.1016/j.conbuildmat.2008.01.003 es_ES
dc.description.references Payá, J., Borrachero, M. V., Monzó, J., Soriano, L., & Tashima, M. M. (2012). A new geopolymeric binder from hydrated-carbonated cement. Materials Letters, 74, 223-225. doi:10.1016/j.matlet.2012.01.132 es_ES
dc.description.references Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2013). Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 108, 833-839. doi:10.1016/j.fuel.2013.02.052 es_ES
dc.description.references Kourti, I., Rani, D. A., Deegan, D., Boccaccini, A. R., & Cheeseman, C. R. (2010). Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. Journal of Hazardous Materials, 176(1-3), 704-709. doi:10.1016/j.jhazmat.2009.11.089 es_ES
dc.description.references Onisei, S., Pontikes, Y., Van Gerven, T., Angelopoulos, G. N., Velea, T., Predica, V., & Moldovan, P. (2012). Synthesis of inorganic polymers using fly ash and primary lead slag. Journal of Hazardous Materials, 205-206, 101-110. doi:10.1016/j.jhazmat.2011.12.039 es_ES
dc.description.references Puligilla, S., & Mondal, P. (2013). Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cement and Concrete Research, 43, 70-80. doi:10.1016/j.cemconres.2012.10.004 es_ES
dc.description.references Bernal, S. A., Rodríguez, E. D., Mejía de Gutiérrez, R., Gordillo, M., & Provis, J. L. (2011). Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. Journal of Materials Science, 46(16), 5477-5486. doi:10.1007/s10853-011-5490-z es_ES
dc.description.references Bernal, S. A., Provis, J. L., Rose, V., & Mejía de Gutierrez, R. (2011). Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement and Concrete Composites, 33(1), 46-54. doi:10.1016/j.cemconcomp.2010.09.004 es_ES
dc.description.references Puertas, F., Martı́nez-Ramı́rez, S., Alonso, S., & Vázquez, T. (2000). Alkali-activated fly ash/slag cements. Cement and Concrete Research, 30(10), 1625-1632. doi:10.1016/s0008-8846(00)00298-2 es_ES
dc.description.references Villar-Cociña, E., Frías Rojas, M., Valencia Morales, E., & Savastano, H. (2009). Study of the pozzolanic reaction kinetics in sugar cane bagasse–clay ash/calcium hydroxide system: kinetic parameters and pozzolanic activity. Advances in Cement Research, 21(1), 23-30. doi:10.1680/adcr.2007.00042 es_ES
dc.description.references Cordeiro, G. C., Toledo Filho, R. D., & Fairbairn, E. M. R. (2009). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 23(10), 3301-3303. doi:10.1016/j.conbuildmat.2009.02.013 es_ES
dc.description.references Payá, J., Monzó, J., Borrachero, M. V., Díaz-Pinzón, L., & Ordóñez, L. M. (2002). Sugar-cane bagasse ash (SCBA): studies on its properties for reusing in concrete production. Journal of Chemical Technology & Biotechnology, 77(3), 321-325. doi:10.1002/jctb.549 es_ES
dc.description.references Tippayasam, C., Boonsalee, S., Sajjavanich, S., Ponzoni, C., Kamseu, E., & Chaysuwan, D. (2010). Geopolymer Development by Powders of Metakaolin and Wastes in Thailand. Advances in Science and Technology, 69, 63-68. doi:10.4028/www.scientific.net/ast.69.63 es_ES
dc.description.references Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cement and Concrete Research, 41(9), 955-963. doi:10.1016/j.cemconres.2011.05.002 es_ES
dc.description.references Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition. Journal of Materials Science, 42(9), 3024-3032. doi:10.1007/s10853-006-0525-6 es_ES
dc.description.references Ortego, J. D., Barroeta, Y., Cartledge, F. K., & Akhter, H. (1991). Leaching effects on silicate polymerization. An FTIR and silicon-29 NMR study of lead and zinc in portland cement. Environmental Science & Technology, 25(6), 1171-1174. doi:10.1021/es00018a024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem