Mostrar el registro sencillo del ítem
dc.contributor.author | García Segura, Tatiana | es_ES |
dc.contributor.author | Yepes Piqueras, Víctor | es_ES |
dc.contributor.author | Alcalá González, Julián | |
dc.date.accessioned | 2015-04-21T11:33:45Z | |
dc.date.available | 2015-04-21T11:33:45Z | |
dc.date.issued | 2014-01 | |
dc.identifier.issn | 0948-3349 | |
dc.identifier.uri | http://hdl.handle.net/10251/49057 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-013-0614-0 | es_ES |
dc.description.abstract | Purpose Blended cements use waste products to replace Portland cement, the main contributor to CO2 emissions in concrete manufacture. Using blended cements reduces the embodied greenhouse gas emissions; however, little attention has been paid to the reduction in CO2 capture (carbonation) and durability. The aim of this study is to determine if the reduction in production emissions of blended cements compensates for the reduced durability and CO2 capture. Methods This study evaluates CO2 emissions and CO2 capture for a reinforced concrete column during its service life and after demolition and reuse as gravel filling material. Concrete depletion, due to carbonation and the unavoidable steel embedded corrosion, is studied, as this process consequently ends the concrete service life. Carbonation deepens progressively during service life and captures CO2 even after demolition due to the greater exposed surface area. In this study, results are presented as a function of cement replaced by fly ash (FA) and blast furnace slag (BFS). Results and discussion Concrete made with Portland cement, FA (35%FA), and BFS blended cements (80%BFS) captures 47, 41, and 20 % of CO2 emissions, respectively. The service life of blended cements with high amounts of cement replacement, like CEM III/A (50 % BFS), CEM III/B (80 % BFS), and CEMII/B-V (35%FA), was about 10%shorter, given the higher carbonation rate coefficient. Compared to Portland cement and despite the reduced CO2 capture and service life, CEM III/B emitted 20 % less CO2 per year. Conclusions To obtain reliable results in a life cycle assessment, it is crucial to consider carbonation during use and after demolition. Replacing Portland cement with FA, instead of BFS, leads to a lower material emission factor, since FA needs less processing after being collected, and transport distances are usually shorter. However, greater reductions were achieved using BFS, since a larger amount of cement can be replaced. Blended cements emit less CO2 per year during the life cycle of a structure, although a high cement replacement reduces the service life notably. If the demolished concrete is crushed and recycled as gravel filling material, carbonation can cut CO2 emissions by half. A case study is presented in this paper demonstrating how the results may be utilized. | es_ES |
dc.description.sponsorship | This research was financially supported by the Spanish Ministry of Science and Innovation (research project BIA2011-23602). The authors thank the anonymous reviewers for their constructive comments and useful suggestions. The authors are also grateful for the thorough revision of the manuscript by Dr. Debra Westall. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | International Journal of Life Cycle Assessment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Blended cement | es_ES |
dc.subject | Carbonation | es_ES |
dc.subject | CO2 emission | es_ES |
dc.subject | Durability | es_ES |
dc.subject | Life cycle | es_ES |
dc.subject | Recycled concrete | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11367-013-0614-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIA2011-23602/ES/DISEÑO EFICIENTE DE ESTRUCTURAS CON HORMIGONES NO CONVENCIONALES BASADOS EN CRITERIOS SOSTENIBLES MULTIOBJETIVO MEDIANTE EL EMPLEO DE TECNICAS DE MINERIA DE DATOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | García Segura, T.; Yepes Piqueras, V.; Alcalá González, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment. 19(1):3-12. https://doi.org/10.1007/s11367-013-0614-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11367-013-0614-0 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 255124 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359 | es_ES |
dc.description.references | Angst U, Elsener B, Larsen C (2009) Critical chloride content in reinforced concrete—a review. Cement Concr Res 39(12):1122–1138 | es_ES |
dc.description.references | Berge B (2000) The ecology of building materials. Architectural Press, Oxford | es_ES |
dc.description.references | Bertolini L, Elsener B, Pedeferri P, Polder R (2004) Corrosion of Steel in Concrete—Prevention Diagnosis. Repair, Wiley-VCH, Weinheim | es_ES |
dc.description.references | Börjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life cycle and forest land-use perspectives. Energy Policy 28(9):575–588 | es_ES |
dc.description.references | Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-crunch algorithm. Eng Struct 48:363–372 | es_ES |
dc.description.references | CEN (2011) EN 197–1: Cement. Part 1: Composition, specifications and conformity criteria for common cements. European Committee for Standardization, Brussels | es_ES |
dc.description.references | CIWMB (2000) Designing with vision: a technical manual for materials choices in sustainable construction. California Integrated Waste Management Board, Sacramento | es_ES |
dc.description.references | Collins F (2010) Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int J Life Cycle Assess 15(6):549–556 | es_ES |
dc.description.references | Database BEDEC (2012) Institute of Construction Technology of Catalonia. Barcelona, Spain | es_ES |
dc.description.references | Dodoo A, Gustavsson L, Sathre R (2009) Carbon implications of end-of-life management of building materials. Resour Conserv Recy 53(5):276–286 | es_ES |
dc.description.references | ECO-SERVE Network Cluster 3 (2004) Baseline Report for the Aggregate and Concrete Industries in Europe. European Commission, Hellerup: http://www.eco-serve.net/uploads/479998_baseline_report_final.pdf , accessed 10 September 2012 | es_ES |
dc.description.references | European Federation of Concrete Admixtures Associations (2006) Environmental Product Declaration (EPD) for Normal Plasticizing admixtures. Environmental Consultant, Sittard: http://www.efca.info/downloads/324%20ETG%20Plasticiser%20EPD.pdf , accessed 13 October 2012 | es_ES |
dc.description.references | Galán I (2011) Carbonatación del hormigón: combinación de CO2. Dissertation, Universidad Complutense de Madrid, Spain | es_ES |
dc.description.references | Galán I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO2 by concrete carbonation. Environ Sci Technol 44(8):3181–3186 | es_ES |
dc.description.references | Flower DJM, Sanjayan JG (2007) Greenhouse gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288 | es_ES |
dc.description.references | Guzmán S, Gálvez JC, Sancho JM (2011) Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement Concr Res 41(8):893–902 | es_ES |
dc.description.references | Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. C Cement Concr Res 32(12):1923–1930 | es_ES |
dc.description.references | Institute for Diversification and Energy Saving (2010) Conversion factors of primary energy and CO2 emissions of 2010. M. Industria, Energía y Turismo, Madrid, Spain: http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Factores_Conversion_Energia_y_CO2_2010_0a9cb734.pdf , accessed 10 September 2012 | es_ES |
dc.description.references | ISO (2005) ISO/TC 71—Business plan. Concrete, reinforced concrete and prestressed concrete. International Organization for Standardization (ISO), Geneva, Switzerland | es_ES |
dc.description.references | ISO (2006) ISO 14040: Environmental management—life-cycle assessment—principles and framework. International Organization for Standardization, Geneva, Switzerland | es_ES |
dc.description.references | Jiang L, Lin B, Cai Y (2000) A model for predicting carbonation of high-volume fly ash concrete. Cement Concr Res 30(5):699–702 | es_ES |
dc.description.references | Jönsson A, Björklund T, Tillman AM (1988) LCA of concrete and steel building frames. Int J Life Cycle Assess 3(4):216–224 | es_ES |
dc.description.references | Knoeri C, Sanyé-Mengual E, Althaus HJ (2013) Comparative LCA of recycled and conventional concrete for structural applications. Int J Life Cycle Assess 18(5):909–918 | es_ES |
dc.description.references | Lagerblad B (2005) Carbon dioxide uptake during concrete life-cycle: State of the art. Swedish Cement and Concrete Research Institute, Stockholm | es_ES |
dc.description.references | Leber I, Blakey FA (1956) Some effects of carbon dioxide on mortars and concrete. J Am Concr Inst 53:295–308 | es_ES |
dc.description.references | Fomento M (2008) EHE-08; Code of Structural Concrete. M. Fomento, Madrid, Spain | es_ES |
dc.description.references | Marinkovic S, Radonjanin V, Malešev M, Ignjatovic I (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag 30(11):2255–2264 | es_ES |
dc.description.references | Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ-SCI A 13(6):420–432 | es_ES |
dc.description.references | O’Brien KR, Ménaché J, O’Moore LM (2009) Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int J Life-cycle Assess 14(7):621–629 | es_ES |
dc.description.references | Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100-year perspective. Cem Concr Res 37(9):1384–1356 | es_ES |
dc.description.references | Papadakis VG, Vayenas CG, Fardis MN (1991) Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater J 88(4):363–373 | es_ES |
dc.description.references | Payá I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building by simulated annealing. Comput-Aided Civ Inf 23(8):596–610 | es_ES |
dc.description.references | Payá-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-efficient design of reinforced concrete building frames. Eng Struct 31(7):1501–1508 | es_ES |
dc.description.references | Saassouh B, Lounis Z (2012) Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods. Cement Concrete Comp 34(9):1082–1093 | es_ES |
dc.description.references | The Concrete Centre (2009) The Concrete Industry Sustainability Performance Report. The Concrete Center, Camberley: http://www.admixtures.org.uk/downloads/Concrete%20Industry%20Sustainable%20Performance%20Report%202009.pdf , accessed 9 September 2012 | es_ES |
dc.description.references | Tuutti K (1982) Corrosion of steel in Concrete. CBI Forskning Research Report, Swedish Cem Concr Res Inst. Stockholm, Sweden | es_ES |
dc.description.references | Weil M, Jeske U, Schebek L (2006) Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manage Res 24(3):197–206 | es_ES |
dc.description.references | World Steel Association (2010) Fact sheet: the three Rs of sustainable Steel. World Steel Association, Brussels: http://www.steel.org/Sustainability/~/media/Files/SMDI/Sustainability/3rs.ashx , accessed 15 September 2012 | es_ES |
dc.description.references | Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329 | es_ES |
dc.description.references | Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386 | es_ES |
dc.description.references | Yiwei T, Qun Z, Jian G (2011) Study on the Life-cycle Carbon Emission and Energy-efficiency Management of the Large-scale Public Buildings in Hangzho. China. International Conference on Computer and Management, Wuhan, pp 546–552 | es_ES |
dc.description.references | Zornoza E, Payá J, Monzó J, Borrachero MV, Garcés P (2009) The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Const Build Mater 23(3):1323–1328 | es_ES |